centos:ssh-install

Dies ist eine alte Version des Dokuments!


Secure Shell - ssh

openSSH LogoBei Internetdiensten wie eMail oder Web haben sich verschlüsselte Datenübertragungen mit SSL/TLS ohne Eingriffe in das Originalprotokoll durchgesetzt. Bei den klassischen unverschlüsselten Unix-Diensten zum Arbeiten mit entfernten Rechnern oder zur Datenübertragung auf andere Rechner - z.B. telnet, rcp und rsh - erfolgt eine alternative Lösiung mittels OpenSSH.

Wichtige Hinweise zur Absicherung von ssh finden sich im Kapitel 4.3.11. Securing SSH aus dem Red Hat Enterprise Linux Security Guide.

Die Optionen rund um opennssh findet amn wie immer, in der manpage zu ssh.

SSH(1)                                      BSD General Commands Manual                                     SSH(1)

NAME
     ssh — OpenSSH SSH client (remote login program)

SYNOPSIS
     ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec] [-D [bind_address:]port] [-E log_file]
         [-e escape_char] [-F configfile] [-I pkcs11] [-i identity_file] [-L [bind_address:]port:host:hostport]
         [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p port]
         [-Q cipher | cipher-auth | mac | kex | key] [-R [bind_address:]port:host:hostport] [-S ctl_path]
         [-W host:port] [-w local_tun[:remote_tun]] [user@]hostname [command]

DESCRIPTION
     ssh (SSH client) is a program for logging into a remote machine and for executing commands on a remote
     machine.  It is intended to replace rlogin and rsh, and provide secure encrypted communications between two
     untrusted hosts over an insecure network.  X11 connections and arbitrary TCP ports can also be forwarded over
     the secure channel.

     ssh connects and logs into the specified hostname (with optional user name).  The user must prove his/her
     identity to the remote machine using one of several methods depending on the protocol version used (see
     below).

     If command is specified, it is executed on the remote host instead of a login shell.

     The options are as follows:

     -1      Forces ssh to try protocol version 1 only.

     -2      Forces ssh to try protocol version 2 only.

     -4      Forces ssh to use IPv4 addresses only.

     -6      Forces ssh to use IPv6 addresses only.

     -A      Enables forwarding of the authentication agent connection.  This can also be specified on a per-host
             basis in a configuration file.

             Agent forwarding should be enabled with caution.  Users with the ability to bypass file permissions
             on the remote host (for the agent's UNIX-domain socket) can access the local agent through the for‐
             warded connection.  An attacker cannot obtain key material from the agent, however they can perform
             operations on the keys that enable them to authenticate using the identities loaded into the agent.

     -a      Disables forwarding of the authentication agent connection.

     -b bind_address
             Use bind_address on the local machine as the source address of the connection.  Only useful on sys‐
             tems with more than one address.

     -C      Requests compression of all data (including stdin, stdout, stderr, and data for forwarded X11 and TCP
             connections).  The compression algorithm is the same used by gzip(1), and the “level” can be con‐
             trolled by the CompressionLevel option for protocol version 1.  Compression is desirable on modem
             lines and other slow connections, but will only slow down things on fast networks.  The default value
             can be set on a host-by-host basis in the configuration files; see the Compression option.

     -c cipher_spec
             Selects the cipher specification for encrypting the session.

             Protocol version 1 allows specification of a single cipher.  The supported values are “3des”,
             “blowfish”, and “des”.  3des (triple-des) is an encrypt-decrypt-encrypt triple with three different
             keys.  It is believed to be secure.  blowfish is a fast block cipher; it appears very secure and is
             much faster than 3des.  des is only supported in the ssh client for interoperability with legacy pro‐
             tocol 1 implementations that do not support the 3des cipher.  Its use is strongly discouraged due to
             cryptographic weaknesses.  The default is “3des”.

             For protocol version 2, cipher_spec is a comma-separated list of ciphers listed in order of prefer‐
             ence.  See the Ciphers keyword in ssh_config(5) for more information.

     -D [bind_address:]port
             Specifies a local “dynamic” application-level port forwarding.  This works by allocating a socket to
             listen to port on the local side, optionally bound to the specified bind_address.  Whenever a connec‐
             tion is made to this port, the connection is forwarded over the secure channel, and the application
             protocol is then used to determine where to connect to from the remote machine.  Currently the SOCKS4
             and SOCKS5 protocols are supported, and ssh will act as a SOCKS server.  Only root can forward privi‐
             leged ports.  Dynamic port forwardings can also be specified in the configuration file.

             IPv6 addresses can be specified by enclosing the address in square brackets.  Only the superuser can
             forward privileged ports.  By default, the local port is bound in accordance with the GatewayPorts
             setting.  However, an explicit bind_address may be used to bind the connection to a specific address.
             The bind_address of “localhost” indicates that the listening port be bound for local use only, while
             an empty address or ‘*’ indicates that the port should be available from all interfaces.

     -E log_file
             Append debug logs to log_file instead of standard error.

     -e escape_char
             Sets the escape character for sessions with a pty (default: ‘~’).  The escape character is only rec‐
             ognized at the beginning of a line.  The escape character followed by a dot (‘.’) closes the connec‐
             tion; followed by control-Z suspends the connection; and followed by itself sends the escape charac‐
             ter once.  Setting the character to “none” disables any escapes and makes the session fully transpar‐
             ent.

     -F configfile
             Specifies an alternative per-user configuration file.  If a configuration file is given on the com‐
             mand line, the system-wide configuration file (/etc/ssh/ssh_config) will be ignored.  The default for
             the per-user configuration file is ~/.ssh/config.

     -f      Requests ssh to go to background just before command execution.  This is useful if ssh is going to
             ask for passwords or passphrases, but the user wants it in the background.  This implies -n.  The
             recommended way to start X11 programs at a remote site is with something like ssh -f host xterm.

             If the ExitOnForwardFailure configuration option is set to “yes”, then a client started with -f will
             wait for all remote port forwards to be successfully established before placing itself in the back‐
             ground.

     -g      Allows remote hosts to connect to local forwarded ports.

     -I pkcs11
             Specify the PKCS#11 shared library ssh should use to communicate with a PKCS#11 token providing the
             user's private RSA key.

     -i identity_file
             Selects a file from which the identity (private key) for public key authentication is read.  The
             default is ~/.ssh/identity for protocol version 1, and ~/.ssh/id_dsa, ~/.ssh/id_ecdsa,
             ~/.ssh/id_ed25519 and ~/.ssh/id_rsa for protocol version 2.  Identity files may also be specified on
             a per-host basis in the configuration file.  It is possible to have multiple -i options (and multiple
             identities specified in configuration files).  ssh will also try to load certificate information from
             the filename obtained by appending -cert.pub to identity filenames.

     -K      Enables GSSAPI-based authentication and forwarding (delegation) of GSSAPI credentials to the server.

     -k      Disables forwarding (delegation) of GSSAPI credentials to the server.

     -L [bind_address:]port:host:hostport
             Specifies that the given port on the local (client) host is to be forwarded to the given host and
             port on the remote side.  This works by allocating a socket to listen to port on the local side,
             optionally bound to the specified bind_address.  Whenever a connection is made to this port, the con‐
             nection is forwarded over the secure channel, and a connection is made to host port hostport from the
             remote machine.  Port forwardings can also be specified in the configuration file.  IPv6 addresses
             can be specified by enclosing the address in square brackets.  Only the superuser can forward privi‐
             leged ports.  By default, the local port is bound in accordance with the GatewayPorts setting.  How‐
             ever, an explicit bind_address may be used to bind the connection to a specific address.  The
             bind_address of “localhost” indicates that the listening port be bound for local use only, while an
             empty address or ‘*’ indicates that the port should be available from all interfaces.

     -l login_name
             Specifies the user to log in as on the remote machine.  This also may be specified on a per-host
             basis in the configuration file.

     -M      Places the ssh client into “master” mode for connection sharing.  Multiple -M options places ssh into
             “master” mode with confirmation required before slave connections are accepted.  Refer to the
             description of ControlMaster in ssh_config(5) for details.

     -m mac_spec
             Additionally, for protocol version 2 a comma-separated list of MAC (message authentication code)
             algorithms can be specified in order of preference.  See the MACs keyword for more information.

     -N      Do not execute a remote command.  This is useful for just forwarding ports (protocol version 2 only).

     -n      Redirects stdin from /dev/null (actually, prevents reading from stdin).  This must be used when ssh
             is run in the background.  A common trick is to use this to run X11 programs on a remote machine.
             For example, ssh -n shadows.cs.hut.fi emacs & will start an emacs on shadows.cs.hut.fi, and the X11
             connection will be automatically forwarded over an encrypted channel.  The ssh program will be put in
             the background.  (This does not work if ssh needs to ask for a password or passphrase; see also the
             -f option.)

     -O ctl_cmd
             Control an active connection multiplexing master process.  When the -O option is specified, the
             ctl_cmd argument is interpreted and passed to the master process.  Valid commands are: “check” (check
             that the master process is running), “forward” (request forwardings without command execution),
             “cancel” (cancel forwardings), “exit” (request the master to exit), and “stop” (request the master to
             stop accepting further multiplexing requests).

     -o option
             Can be used to give options in the format used in the configuration file.  This is useful for speci‐
             fying options for which there is no separate command-line flag.  For full details of the options
             listed below, and their possible values, see ssh_config(5).

                   AddressFamily
                   BatchMode
                   BindAddress
                   CanonicalDomains
                   CanonicalizeFallbackLocal
                   CanonicalizeHostname
                   CanonicalizeMaxDots
                   CanonicalizePermittedCNAMEs
                   ChallengeResponseAuthentication
                   CheckHostIP
                   Cipher
                   Ciphers
                   ClearAllForwardings
                   Compression
                   CompressionLevel
                   ConnectionAttempts
                   ConnectTimeout
                   ControlMaster
                   ControlPath
                   ControlPersist
                   DynamicForward
                   EscapeChar
                   ExitOnForwardFailure
                   ForwardAgent
                   ForwardX11
                   ForwardX11Timeout
                   ForwardX11Trusted
                   GatewayPorts
                   GlobalKnownHostsFile
                   GSSAPIAuthentication
                   GSSAPIKeyExchange
                   GSSAPIClientIdentity
                   GSSAPIDelegateCredentials
                   GSSAPIRenewalForcesRekey
                   GSSAPITrustDns
                   GSSAPIKexAlgorithms
                   HashKnownHosts
                   Host
                   HostbasedAuthentication
                   HostKeyAlgorithms
                   HostKeyAlias
                   HostName
                   IdentityFile
                   IdentitiesOnly
                   IPQoS
                   KbdInteractiveAuthentication
                   KbdInteractiveDevices
                   KexAlgorithms
                   LocalCommand
                   LocalForward
                   LogLevel
                   MACs
                   Match
                   NoHostAuthenticationForLocalhost
                   NumberOfPasswordPrompts
                   PasswordAuthentication
                   PermitLocalCommand
                   PKCS11Provider
                   Port
                   PreferredAuthentications
                   Protocol
                   ProxyCommand
                   ProxyUseFdpass
                   PubkeyAuthentication
                   RekeyLimit
                   RemoteForward
                   RequestTTY
                   RhostsRSAAuthentication
                   RSAAuthentication
                   SendEnv
                   ServerAliveInterval
                   ServerAliveCountMax
                   StrictHostKeyChecking
                   TCPKeepAlive
                   Tunnel
                   TunnelDevice
                   UsePrivilegedPort
                   User
                   UserKnownHostsFile
                   VerifyHostKeyDNS
                   VisualHostKey
                   XAuthLocation

     -p port
             Port to connect to on the remote host.  This can be specified on a per-host basis in the configura‐
             tion file.

     -Q cipher | cipher-auth | mac | kex | key
             Queries ssh for the algorithms supported for the specified version 2.  The available features are:
             cipher (supported symmetric ciphers), cipher-auth (supported symmetric ciphers that support authenti‐
             cated encryption), mac (supported message integrity codes), kex (key exchange algorithms), key (key
             types).

     -q      Quiet mode.  Causes most warning and diagnostic messages to be suppressed.

     -R [bind_address:]port:host:hostport
             Specifies that the given port on the remote (server) host is to be forwarded to the given host and
             port on the local side.  This works by allocating a socket to listen to port on the remote side, and
             whenever a connection is made to this port, the connection is forwarded over the secure channel, and
             a connection is made to host port hostport from the local machine.

             Port forwardings can also be specified in the configuration file.  Privileged ports can be forwarded
             only when logging in as root on the remote machine.  IPv6 addresses can be specified by enclosing the
             address in square brackets.

             By default, the listening socket on the server will be bound to the loopback interface only.  This
             may be overridden by specifying a bind_address.  An empty bind_address, or the address ‘*’, indicates
             that the remote socket should listen on all interfaces.  Specifying a remote bind_address will only
             succeed if the server's GatewayPorts option is enabled (see sshd_config(5)).

             If the port argument is ‘0’, the listen port will be dynamically allocated on the server and reported
             to the client at run time.  When used together with -O forward the allocated port will be printed to
             the standard output.

     -S ctl_path
             Specifies the location of a control socket for connection sharing, or the string “none” to disable
             connection sharing.  Refer to the description of ControlPath and ControlMaster in ssh_config(5) for
             details.

     -s      May be used to request invocation of a subsystem on the remote system.  Subsystems are a feature of
             the SSH2 protocol which facilitate the use of SSH as a secure transport for other applications (eg.
             sftp(1)).  The subsystem is specified as the remote command.

     -T      Disable pseudo-tty allocation.

     -t      Force pseudo-tty allocation.  This can be used to execute arbitrary screen-based programs on a remote
             machine, which can be very useful, e.g. when implementing menu services.  Multiple -t options force
             tty allocation, even if ssh has no local tty.

     -V      Display the version number and exit.

     -v      Verbose mode.  Causes ssh to print debugging messages about its progress.  This is helpful in debug‐
             ging connection, authentication, and configuration problems.  Multiple -v options increase the ver‐
             bosity.  The maximum is 3.

     -W host:port
             Requests that standard input and output on the client be forwarded to host on port over the secure
             channel.  Implies -N, -T, ExitOnForwardFailure and ClearAllForwardings.  Works with Protocol version
             2 only.

     -w local_tun[:remote_tun]
             Requests tunnel device forwarding with the specified tun(4) devices between the client (local_tun)
             and the server (remote_tun).

             The devices may be specified by numerical ID or the keyword “any”, which uses the next available tun‐
             nel device.  If remote_tun is not specified, it defaults to “any”.  See also the Tunnel and
             TunnelDevice directives in ssh_config(5).  If the Tunnel directive is unset, it is set to the default
             tunnel mode, which is “point-to-point”.

     -X      Enables X11 forwarding.  This can also be specified on a per-host basis in a configuration file.

             X11 forwarding should be enabled with caution.  Users with the ability to bypass file permissions on
             the remote host (for the user's X authorization database) can access the local X11 display through
             the forwarded connection.  An attacker may then be able to perform activities such as keystroke moni‐
             toring.

             For this reason, X11 forwarding is subjected to X11 SECURITY extension restrictions by default.
             Please refer to the ssh -Y option and the ForwardX11Trusted directive in ssh_config(5) for more
             information.

     -x      Disables X11 forwarding.

     -Y      Enables trusted X11 forwarding.  Trusted X11 forwardings are not subjected to the X11 SECURITY exten‐
             sion controls.

     -y      Send log information using the syslog(3) system module.  By default this information is sent to
             stderr.

     ssh may additionally obtain configuration data from a per-user configuration file and a system-wide configu‐
     ration file.  The file format and configuration options are described in ssh_config(5).

AUTHENTICATION
     The OpenSSH SSH client supports SSH protocols 1 and 2.  The default is to use protocol 2 only, though this
     can be changed via the Protocol option in ssh_config(5) or the -1 and -2 options (see above).  Both protocols
     support similar authentication methods, but protocol 2 is the default since it provides additional mechanisms
     for confidentiality (the traffic is encrypted using AES, 3DES, Blowfish, CAST128, or Arcfour) and integrity
     (hmac-md5, hmac-sha1, hmac-sha2-256, hmac-sha2-512, umac-64, umac-128, hmac-ripemd160).  Protocol 1 lacks a
     strong mechanism for ensuring the integrity of the connection.

     The methods available for authentication are: GSSAPI-based authentication, host-based authentication, public
     key authentication, challenge-response authentication, and password authentication.  Authentication methods
     are tried in the order specified above, though protocol 2 has a configuration option to change the default
     order: PreferredAuthentications.

     Host-based authentication works as follows: If the machine the user logs in from is listed in
     /etc/hosts.equiv or /etc/ssh/shosts.equiv on the remote machine, and the user names are the same on both
     sides, or if the files ~/.rhosts or ~/.shosts exist in the user's home directory on the remote machine and
     contain a line containing the name of the client machine and the name of the user on that machine, the user
     is considered for login.  Additionally, the server must be able to verify the client's host key (see the
     description of /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts, below) for login to be permitted.  This
     authentication method closes security holes due to IP spoofing, DNS spoofing, and routing spoofing.  [Note to
     the administrator: /etc/hosts.equiv, ~/.rhosts, and the rlogin/rsh protocol in general, are inherently inse‐
     cure and should be disabled if security is desired.]

     Public key authentication works as follows: The scheme is based on public-key cryptography, using cryptosys‐
     tems where encryption and decryption are done using separate keys, and it is unfeasible to derive the decryp‐
     tion key from the encryption key.  The idea is that each user creates a public/private key pair for authenti‐
     cation purposes.  The server knows the public key, and only the user knows the private key.  ssh implements
     public key authentication protocol automatically, using one of the DSA, ECDSA, ED25519 or RSA algorithms.
     Protocol 1 is restricted to using only RSA keys, but protocol 2 may use any.  The HISTORY section of ssl(8)
     contains a brief discussion of the DSA and RSA algorithms.

     The file ~/.ssh/authorized_keys lists the public keys that are permitted for logging in.  When the user logs
     in, the ssh program tells the server which key pair it would like to use for authentication.  The client
     proves that it has access to the private key and the server checks that the corresponding public key is
     authorized to accept the account.

     The user creates his/her key pair by running ssh-keygen(1).  This stores the private key in ~/.ssh/identity
     (protocol 1), ~/.ssh/id_dsa (protocol 2 DSA), ~/.ssh/id_ecdsa (protocol 2 ECDSA), ~/.ssh/id_ed25519 (protocol
     2 ED25519), or ~/.ssh/id_rsa (protocol 2 RSA) and stores the public key in ~/.ssh/identity.pub (protocol 1),
     ~/.ssh/id_dsa.pub (protocol 2 DSA), ~/.ssh/id_ecdsa.pub (protocol 2 ECDSA), ~/.ssh/id_ed25519.pub (protocol 2
     ED25519), or ~/.ssh/id_rsa.pub (protocol 2 RSA) in the user's home directory.  The user should then copy the
     public key to ~/.ssh/authorized_keys in his/her home directory on the remote machine.  The authorized_keys
     file corresponds to the conventional ~/.rhosts file, and has one key per line, though the lines can be very
     long.  After this, the user can log in without giving the password.

     A variation on public key authentication is available in the form of certificate authentication: instead of a
     set of public/private keys, signed certificates are used.  This has the advantage that a single trusted cer‐
     tification authority can be used in place of many public/private keys.  See the CERTIFICATES section of
     ssh-keygen(1) for more information.

     The most convenient way to use public key or certificate authentication may be with an authentication agent.
     See ssh-agent(1) for more information.

     Challenge-response authentication works as follows: The server sends an arbitrary "challenge" text, and
     prompts for a response.  Protocol 2 allows multiple challenges and responses; protocol 1 is restricted to
     just one challenge/response.  Examples of challenge-response authentication include BSD Authentication (see
     login.conf(5)) and PAM (some non-OpenBSD systems).

     Finally, if other authentication methods fail, ssh prompts the user for a password.  The password is sent to
     the remote host for checking; however, since all communications are encrypted, the password cannot be seen by
     someone listening on the network.

     ssh automatically maintains and checks a database containing identification for all hosts it has ever been
     used with.  Host keys are stored in ~/.ssh/known_hosts in the user's home directory.  Additionally, the file
     /etc/ssh/ssh_known_hosts is automatically checked for known hosts.  Any new hosts are automatically added to
     the user's file.  If a host's identification ever changes, ssh warns about this and disables password authen‐
     tication to prevent server spoofing or man-in-the-middle attacks, which could otherwise be used to circumvent
     the encryption.  The StrictHostKeyChecking option can be used to control logins to machines whose host key is
     not known or has changed.

     When the user's identity has been accepted by the server, the server either executes the given command, or
     logs into the machine and gives the user a normal shell on the remote machine.  All communication with the
     remote command or shell will be automatically encrypted.

     If a pseudo-terminal has been allocated (normal login session), the user may use the escape characters noted
     below.

     If no pseudo-tty has been allocated, the session is transparent and can be used to reliably transfer binary
     data.  On most systems, setting the escape character to “none” will also make the session transparent even if
     a tty is used.

     The session terminates when the command or shell on the remote machine exits and all X11 and TCP connections
     have been closed.

ESCAPE CHARACTERS
     When a pseudo-terminal has been requested, ssh supports a number of functions through the use of an escape
     character.

     A single tilde character can be sent as ~~ or by following the tilde by a character other than those
     described below.  The escape character must always follow a newline to be interpreted as special.  The escape
     character can be changed in configuration files using the EscapeChar configuration directive or on the com‐
     mand line by the -e option.

     The supported escapes (assuming the default ‘~’) are:

     ~.      Disconnect.

     ~^Z     Background ssh.

     ~#      List forwarded connections.

     ~&      Background ssh at logout when waiting for forwarded connection / X11 sessions to terminate.

     ~?      Display a list of escape characters.

     ~B      Send a BREAK to the remote system (only useful for SSH protocol version 2 and if the peer supports
             it).

     ~C      Open command line.  Currently this allows the addition of port forwardings using the -L, -R and -D
             options (see above).  It also allows the cancellation of existing port-forwardings with
             -KL[bind_address:]port for local, -KR[bind_address:]port for remote and -KD[bind_address:]port for
             dynamic port-forwardings.  !command allows the user to execute a local command if the
             PermitLocalCommand option is enabled in ssh_config(5).  Basic help is available, using the -h option.

     ~R      Request rekeying of the connection (only useful for SSH protocol version 2 and if the peer supports
             it).

     ~V      Decrease the verbosity (LogLevel) when errors are being written to stderr.

     ~v      Increase the verbosity (LogLevel) when errors are being written to stderr.

TCP FORWARDING
     Forwarding of arbitrary TCP connections over the secure channel can be specified either on the command line
     or in a configuration file.  One possible application of TCP forwarding is a secure connection to a mail
     server; another is going through firewalls.

     In the example below, we look at encrypting communication between an IRC client and server, even though the
     IRC server does not directly support encrypted communications.  This works as follows: the user connects to
     the remote host using ssh, specifying a port to be used to forward connections to the remote server.  After
     that it is possible to start the service which is to be encrypted on the client machine, connecting to the
     same local port, and ssh will encrypt and forward the connection.

     The following example tunnels an IRC session from client machine “127.0.0.1” (localhost) to remote server
     “server.example.com”:

         $ ssh -f -L 1234:localhost:6667 server.example.com sleep 10
         $ irc -c '#users' -p 1234 pinky 127.0.0.1

     This tunnels a connection to IRC server “server.example.com”, joining channel “#users”, nickname “pinky”,
     using port 1234.  It doesn't matter which port is used, as long as it's greater than 1023 (remember, only
     root can open sockets on privileged ports) and doesn't conflict with any ports already in use.  The connec‐
     tion is forwarded to port 6667 on the remote server, since that's the standard port for IRC services.

     The -f option backgrounds ssh and the remote command “sleep 10” is specified to allow an amount of time (10
     seconds, in the example) to start the service which is to be tunnelled.  If no connections are made within
     the time specified, ssh will exit.

X11 FORWARDING
     If the ForwardX11 variable is set to “yes” (or see the description of the -X, -x, and -Y options above) and
     the user is using X11 (the DISPLAY environment variable is set), the connection to the X11 display is auto‐
     matically forwarded to the remote side in such a way that any X11 programs started from the shell (or com‐
     mand) will go through the encrypted channel, and the connection to the real X server will be made from the
     local machine.  The user should not manually set DISPLAY.  Forwarding of X11 connections can be configured on
     the command line or in configuration files.

     The DISPLAY value set by ssh will point to the server machine, but with a display number greater than zero.
     This is normal, and happens because ssh creates a “proxy” X server on the server machine for forwarding the
     connections over the encrypted channel.

     ssh will also automatically set up Xauthority data on the server machine.  For this purpose, it will generate
     a random authorization cookie, store it in Xauthority on the server, and verify that any forwarded connec‐
     tions carry this cookie and replace it by the real cookie when the connection is opened.  The real authenti‐
     cation cookie is never sent to the server machine (and no cookies are sent in the plain).

     If the ForwardAgent variable is set to “yes” (or see the description of the -A and -a options above) and the
     user is using an authentication agent, the connection to the agent is automatically forwarded to the remote
     side.

VERIFYING HOST KEYS
     When connecting to a server for the first time, a fingerprint of the server's public key is presented to the
     user (unless the option StrictHostKeyChecking has been disabled).  Fingerprints can be determined using
     ssh-keygen(1):

           $ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key

     If the fingerprint is already known, it can be matched and the key can be accepted or rejected.  Because of
     the difficulty of comparing host keys just by looking at hex strings, there is also support to compare host
     keys visually, using random art.  By setting the VisualHostKey option to “yes”, a small ASCII graphic gets
     displayed on every login to a server, no matter if the session itself is interactive or not.  By learning the
     pattern a known server produces, a user can easily find out that the host key has changed when a completely
     different pattern is displayed.  Because these patterns are not unambiguous however, a pattern that looks
     similar to the pattern remembered only gives a good probability that the host key is the same, not guaranteed
     proof.

     To get a listing of the fingerprints along with their random art for all known hosts, the following command
     line can be used:

           $ ssh-keygen -lv -f ~/.ssh/known_hosts

     If the fingerprint is unknown, an alternative method of verification is available: SSH fingerprints verified
     by DNS.  An additional resource record (RR), SSHFP, is added to a zonefile and the connecting client is able
     to match the fingerprint with that of the key presented.

     In this example, we are connecting a client to a server, “host.example.com”.  The SSHFP resource records
     should first be added to the zonefile for host.example.com:

           $ ssh-keygen -r host.example.com.

     The output lines will have to be added to the zonefile.  To check that the zone is answering fingerprint
     queries:

           $ dig -t SSHFP host.example.com

     Finally the client connects:

           $ ssh -o "VerifyHostKeyDNS ask" host.example.com
           [...]
           Matching host key fingerprint found in DNS.
           Are you sure you want to continue connecting (yes/no)?

     See the VerifyHostKeyDNS option in ssh_config(5) for more information.

SSH-BASED VIRTUAL PRIVATE NETWORKS
     ssh contains support for Virtual Private Network (VPN) tunnelling using the tun(4) network pseudo-device,
     allowing two networks to be joined securely.  The sshd_config(5) configuration option PermitTunnel controls
     whether the server supports this, and at what level (layer 2 or 3 traffic).

     The following example would connect client network 10.0.50.0/24 with remote network 10.0.99.0/24 using a
     point-to-point connection from 10.1.1.1 to 10.1.1.2, provided that the SSH server running on the gateway to
     the remote network, at 192.168.1.15, allows it.

     On the client:

           # ssh -f -w 0:1 192.168.1.15 true
           # ifconfig tun0 10.1.1.1 10.1.1.2 netmask 255.255.255.252
           # route add 10.0.99.0/24 10.1.1.2

     On the server:

           # ifconfig tun1 10.1.1.2 10.1.1.1 netmask 255.255.255.252
           # route add 10.0.50.0/24 10.1.1.1

     Client access may be more finely tuned via the /root/.ssh/authorized_keys file (see below) and the
     PermitRootLogin server option.  The following entry would permit connections on tun(4) device 1 from user
     “jane” and on tun device 2 from user “john”, if PermitRootLogin is set to “forced-commands-only”:

       tunnel="1",command="sh /etc/netstart tun1" ssh-rsa ... jane
       tunnel="2",command="sh /etc/netstart tun2" ssh-rsa ... john

     Since an SSH-based setup entails a fair amount of overhead, it may be more suited to temporary setups, such
     as for wireless VPNs.  More permanent VPNs are better provided by tools such as ipsecctl(8) and isakmpd(8).

ENVIRONMENT
     ssh will normally set the following environment variables:

     DISPLAY               The DISPLAY variable indicates the location of the X11 server.  It is automatically set
                           by ssh to point to a value of the form “hostname:n”, where “hostname” indicates the
                           host where the shell runs, and ‘n’ is an integer ≥ 1.  ssh uses this special value to
                           forward X11 connections over the secure channel.  The user should normally not set
                           DISPLAY explicitly, as that will render the X11 connection insecure (and will require
                           the user to manually copy any required authorization cookies).

     HOME                  Set to the path of the user's home directory.

     LOGNAME               Synonym for USER; set for compatibility with systems that use this variable.

     MAIL                  Set to the path of the user's mailbox.

     PATH                  Set to the default PATH, as specified when compiling ssh.

     SSH_ASKPASS           If ssh needs a passphrase, it will read the passphrase from the current terminal if it
                           was run from a terminal.  If ssh does not have a terminal associated with it but
                           DISPLAY and SSH_ASKPASS are set, it will execute the program specified by SSH_ASKPASS
                           and open an X11 window to read the passphrase.  This is particularly useful when call‐
                           ing ssh from a .xsession or related script.  (Note that on some machines it may be nec‐
                           essary to redirect the input from /dev/null to make this work.)

     SSH_AUTH_SOCK         Identifies the path of a UNIX-domain socket used to communicate with the agent.

     SSH_CONNECTION        Identifies the client and server ends of the connection.  The variable contains four
                           space-separated values: client IP address, client port number, server IP address, and
                           server port number.

     SSH_ORIGINAL_COMMAND  This variable contains the original command line if a forced command is executed.  It
                           can be used to extract the original arguments.

     SSH_TTY               This is set to the name of the tty (path to the device) associated with the current
                           shell or command.  If the current session has no tty, this variable is not set.

     TZ                    This variable is set to indicate the present time zone if it was set when the daemon
                           was started (i.e. the daemon passes the value on to new connections).

     USER                  Set to the name of the user logging in.

     Additionally, ssh reads ~/.ssh/environment, and adds lines of the format “VARNAME=value” to the environment
     if the file exists and users are allowed to change their environment.  For more information, see the
     PermitUserEnvironment option in sshd_config(5).

ENVIRONMENT
     SSH_USE_STRONG_RNG
             The reseeding of the OpenSSL random generator is usually done from /dev/urandom.  If the
             SSH_USE_STRONG_RNG environment variable is set to value other than 0 the OpenSSL random generator is
             reseeded from /dev/random.  The number of bytes read is defined by the SSH_USE_STRONG_RNG value.
             Minimum is 14 bytes.  This setting is not recommended on the computers without the hardware random
             generator because insufficient entropy causes the connection to be blocked until enough entropy is
             available.

FILES
     ~/.rhosts
             This file is used for host-based authentication (see above).  On some machines this file may need to
             be world-readable if the user's home directory is on an NFS partition, because sshd(8) reads it as
             root.  Additionally, this file must be owned by the user, and must not have write permissions for
             anyone else.  The recommended permission for most machines is read/write for the user, and not acces‐
             sible by others.

     ~/.shosts
             This file is used in exactly the same way as .rhosts, but allows host-based authentication without
             permitting login with rlogin/rsh.

     ~/.ssh/
             This directory is the default location for all user-specific configuration and authentication infor‐
             mation.  There is no general requirement to keep the entire contents of this directory secret, but
             the recommended permissions are read/write/execute for the user, and not accessible by others.

     ~/.ssh/authorized_keys
             Lists the public keys (DSA, ECDSA, ED25519, RSA) that can be used for logging in as this user.  The
             format of this file is described in the sshd(8) manual page.  This file is not highly sensitive, but
             the recommended permissions are read/write for the user, and not accessible by others.

     ~/.ssh/config
             This is the per-user configuration file.  The file format and configuration options are described in
             ssh_config(5).  Because of the potential for abuse, this file must have strict permissions:
             read/write for the user, and not writable by others.

     ~/.ssh/environment
             Contains additional definitions for environment variables; see ENVIRONMENT, above.

     ~/.ssh/identity
     ~/.ssh/id_dsa
     ~/.ssh/id_ecdsa
     ~/.ssh/id_ed25519
     ~/.ssh/id_rsa
             Contains the private key for authentication.  These files contain sensitive data and should be read‐
             able by the user but not accessible by others (read/write/execute).  ssh will simply ignore a private
             key file if it is accessible by others.  It is possible to specify a passphrase when generating the
             key which will be used to encrypt the sensitive part of this file using 3DES.

     ~/.ssh/identity.pub
     ~/.ssh/id_dsa.pub
     ~/.ssh/id_ecdsa.pub
     ~/.ssh/id_ed25519.pub
     ~/.ssh/id_rsa.pub
             Contains the public key for authentication.  These files are not sensitive and can (but need not) be
             readable by anyone.

     ~/.ssh/known_hosts
             Contains a list of host keys for all hosts the user has logged into that are not already in the sys‐
             temwide list of known host keys.  See sshd(8) for further details of the format of this file.

     ~/.ssh/rc
             Commands in this file are executed by ssh when the user logs in, just before the user's shell (or
             command) is started.  See the sshd(8) manual page for more information.

     /etc/hosts.equiv
             This file is for host-based authentication (see above).  It should only be writable by root.

     /etc/ssh/shosts.equiv
             This file is used in exactly the same way as hosts.equiv, but allows host-based authentication with‐
             out permitting login with rlogin/rsh.

     /etc/ssh/ssh_config
             Systemwide configuration file.  The file format and configuration options are described in
             ssh_config(5).

     /etc/ssh/ssh_host_key
     /etc/ssh/ssh_host_dsa_key
     /etc/ssh/ssh_host_ecdsa_key
     /etc/ssh/ssh_host_ed25519_key
     /etc/ssh/ssh_host_rsa_key
             These files contain the private parts of the host keys and are used for host-based authentication.
             If protocol version 1 is used, ssh must be setuid root, since the host key is readable only by root.
             For protocol version 2, ssh uses ssh-keysign(8) to access the host keys, eliminating the requirement
             that ssh be setuid root when host-based authentication is used.  By default ssh is not setuid root.

     /etc/ssh/ssh_known_hosts
             Systemwide list of known host keys.  This file should be prepared by the system administrator to con‐
             tain the public host keys of all machines in the organization.  It should be world-readable.  See
             sshd(8) for further details of the format of this file.

     /etc/ssh/sshrc
             Commands in this file are executed by ssh when the user logs in, just before the user's shell (or
             command) is started.  See the sshd(8) manual page for more information.

EXIT STATUS
     ssh exits with the exit status of the remote command or with 255 if an error occurred.

IPV6
     IPv6 address can be used everywhere where IPv4 address. In all entries must be the IPv6 address enclosed in
     square brackets. Note: The square brackets are metacharacters for the shell and must be escaped in shell.

SEE ALSO
     scp(1), sftp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssh-keyscan(1), tun(4), hosts.equiv(5),
     ssh_config(5), ssh-keysign(8), sshd(8)

STANDARDS
     S. Lehtinen and C. Lonvick, The Secure Shell (SSH) Protocol Assigned Numbers, RFC 4250, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Protocol Architecture, RFC 4251, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Authentication Protocol, RFC 4252, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Transport Layer Protocol, RFC 4253, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Connection Protocol, RFC 4254, January 2006.

     J. Schlyter and W. Griffin, Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC 4255,
     January 2006.

     F. Cusack and M. Forssen, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH), RFC
     4256, January 2006.

     J. Galbraith and P. Remaker, The Secure Shell (SSH) Session Channel Break Extension, RFC 4335, January 2006.

     M. Bellare, T. Kohno, and C. Namprempre, The Secure Shell (SSH) Transport Layer Encryption Modes, RFC 4344,
     January 2006.

     B. Harris, Improved Arcfour Modes for the Secure Shell (SSH) Transport Layer Protocol, RFC 4345, January
     2006.

     M. Friedl, N. Provos, and W. Simpson, Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport
     Layer Protocol, RFC 4419, March 2006.

     J. Galbraith and R. Thayer, The Secure Shell (SSH) Public Key File Format, RFC 4716, November 2006.

     D. Stebila and J. Green, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer, RFC 5656,
     December 2009.

     A. Perrig and D. Song, Hash Visualization: a New Technique to improve Real-World Security, 1999,
     International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC '99).

AUTHORS
     OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.  Aaron Campbell, Bob
     Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added newer features and
     created OpenSSH.  Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0.

BSD                                              November 12, 2016                                             BSD

Die für die Secure-Shell benötigten Pakete werden i.d.R. bereits bei der Erstinstallation erfolgreich ins System eingebettet. Bei Centos teilen sich die Programme der Programmsuite auf folgende Pakete auf:

  • openssh : Die OpenSSH-Implementierung der SSH Protokoll-Versionen 2 (und 1)
  • openssh-clients : Die OpenSSH-Client-Anwendungen
  • openssh-server : Der OpenSSH-Server Daemon
  • openssh-askpass : Passphrase-Dialog für OpenSSH und X

Mittels rpm -qil können wir überprüfen, welche Programme, Konfigurationsdateien und Dokumentationen beim Paket openssh installiert wurden.

 # rpm -qil openssh
Name        : openssh
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Wed 23 Mar 2016 07:14:52 PM CET
Group       : Applications/Internet
Size        : 1450050
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:22:48 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : An open source implementation of SSH protocol versions 1 and 2
Description :
SSH (Secure SHell) is a program for logging into and executing
commands on a remote machine. SSH is intended to replace rlogin and
rsh, and to provide secure encrypted communications between two
untrusted hosts over an insecure network. X11 connections and
arbitrary TCP/IP ports can also be forwarded over the secure channel.

OpenSSH is OpenBSD's version of the last free version of SSH, bringing
it up to date in terms of security and features.

This package includes the core files necessary for both the OpenSSH
client and server. To make this package useful, you should also
install openssh-clients, openssh-server, or both.
/etc/ssh
/etc/ssh/moduli
/usr/bin/ssh-keygen
/usr/libexec/openssh
/usr/libexec/openssh/ctr-cavstest
/usr/libexec/openssh/ssh-keysign
/usr/share/doc/openssh-6.6.1p1
/usr/share/doc/openssh-6.6.1p1/CREDITS
/usr/share/doc/openssh-6.6.1p1/ChangeLog
/usr/share/doc/openssh-6.6.1p1/INSTALL
/usr/share/doc/openssh-6.6.1p1/OVERVIEW
/usr/share/doc/openssh-6.6.1p1/PROTOCOL
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.agent
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.certkeys
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.chacha20poly1305
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.key
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.krl
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.mux
/usr/share/doc/openssh-6.6.1p1/README
/usr/share/doc/openssh-6.6.1p1/README.dns
/usr/share/doc/openssh-6.6.1p1/README.platform
/usr/share/doc/openssh-6.6.1p1/README.privsep
/usr/share/doc/openssh-6.6.1p1/README.tun
/usr/share/doc/openssh-6.6.1p1/TODO
/usr/share/licenses/openssh-6.6.1p1
/usr/share/licenses/openssh-6.6.1p1/LICENCE
/usr/share/man/man1/ssh-keygen.1.gz
/usr/share/man/man8/ssh-keysign.8.gz

Beim Paket openssh-clients wird mitgeliefert:

 # rpm -qil openssh-clients
Name        : openssh-clients
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Wed 23 Mar 2016 07:14:59 PM CET
Group       : Applications/Internet
Size        : 2298871
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:22:58 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : An open source SSH client applications
Description :
OpenSSH is a free version of SSH (Secure SHell), a program for logging
into and executing commands on a remote machine. This package includes
the clients necessary to make encrypted connections to SSH servers.
/etc/ssh/ssh_config
/usr/bin/scp
/usr/bin/sftp
/usr/bin/slogin
/usr/bin/ssh
/usr/bin/ssh-add
/usr/bin/ssh-agent
/usr/bin/ssh-copy-id
/usr/bin/ssh-keyscan
/usr/lib64/fipscheck/ssh.hmac
/usr/libexec/openssh/ssh-pkcs11-helper
/usr/share/man/man1/scp.1.gz
/usr/share/man/man1/sftp.1.gz
/usr/share/man/man1/slogin.1.gz
/usr/share/man/man1/ssh-add.1.gz
/usr/share/man/man1/ssh-agent.1.gz
/usr/share/man/man1/ssh-copy-id.1.gz
/usr/share/man/man1/ssh-keyscan.1.gz
/usr/share/man/man1/ssh.1.gz
/usr/share/man/man5/ssh_config.5.gz
/usr/share/man/man8/ssh-pkcs11-helper.8.gz

Hingegen liefert uns openssh-server folgende Dateien:

 # rpm -qil openssh-server
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Wed 23 Mar 2016 07:14:58 PM CET
Group       : System Environment/Daemons
Size        : 943088
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:23:11 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : An open source SSH server daemon
Description :
OpenSSH is a free version of SSH (Secure SHell), a program for logging
into and executing commands on a remote machine. This package contains
the secure shell daemon (sshd). The sshd daemon allows SSH clients to
securely connect to your SSH server.
/etc/pam.d/sshd
/etc/ssh/sshd_config
/etc/sysconfig/sshd
/usr/lib/systemd/system/sshd-keygen.service
/usr/lib/systemd/system/sshd.service
/usr/lib/systemd/system/sshd.socket
/usr/lib/systemd/system/sshd@.service
/usr/lib64/fipscheck/sshd.hmac
/usr/libexec/openssh/sftp-server
/usr/sbin/sshd
/usr/sbin/sshd-keygen
/usr/share/man/man5/moduli.5.gz
/usr/share/man/man5/sshd_config.5.gz
/usr/share/man/man8/sftp-server.8.gz
/usr/share/man/man8/sshd.8.gz
/var/empty/sshd

Zu guter Letzt sehen wir uns noch das Paket openssh-askpass genauer an:

 # rpm -qil openssh-askpass
Name        : openssh-askpass
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Sat 12 Nov 2016 08:22:40 PM CET
Group       : Applications/Internet
Size        : 15944
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:22:53 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : A passphrase dialog for OpenSSH and X
Description :
OpenSSH is a free version of SSH (Secure SHell), a program for logging
into and executing commands on a remote machine. This package contains
an X11 passphrase dialog for OpenSSH.
/etc/profile.d/gnome-ssh-askpass.csh
/etc/profile.d/gnome-ssh-askpass.sh
/usr/libexec/openssh/gnome-ssh-askpass
/usr/libexec/openssh/ssh-askpass

Auch wenn das Passwort bei ssh verschlüsselt übertragen wird, lohnt ein Blick auf die Alternative RSA/DSA-Authentifizierung. Bei dieser Variante muss gar kein Passwort über das Netz übertragen werden. Normalerweise muss der User beim Zugriff via ssh auf einen entfernten Rechner sein Passwort eingeben. Zum einen wollen wir aus Sicherheitsgründen darauf verzichten und zum anderen kann dies doch auf Dauer doch als etwas nervig empfunden werden. Einfacher geht dies über asymetrische Schlüssel.

Als erstes erzeugen wir uns einen Schlüssel für die Authentifizierung:

[django@host ~]$ ssh-keygen -b 4096 -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/django/.ssh/id_rsa): 
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /home/django/.ssh/id_rsa.
Your public key has been saved in /home/django/.ssh/id_rsa.pub.
The key fingerprint is:
2b:83:69:f2:76:e8:c9:8b:cf:34:c8:c2:ae:2b:e1:ee django@host.nausch.org
 $ ssh-keygen -t ed25519 -o -a 100 -C django@nausch.org -f ~/.ssh/id_ed25519_dmz

Die passphrase die man hier angibt, wird später beim Anmelden auf dem entfernten Rechner abgefragt, oder vom ssh-agent bei der Anmeldung mitübergeben.

Nun liegen in dem Verzeichnis /home/django/.ssh zwei Dateien:

[django@host .ssh]$ ll
insgesamt 24
-rw------- 1 django django 3311 22. Apr 22:11 id_rsa
-rw-r--r-- 1 django django  748 22. Apr 22:11 id_rsa.pub

id_rsa enthält den privaten Schlüssel und sollte auf keinen Fall weitergegeben werden und darf auch nur für den Nutzer selbst lesbar sein! id_rsa.pub, der öffentliche Schlüssel, dagegen muss auf den Zielrechner kopiert werden.

Auf dem Zielrechner legen wir nun das Verzeichnis .ssh an und schützen es entsprechend.

[django@zielhost django]$ mkdir .ssh
[django@zielhost django]$ chmod 700 .ssh

Den öffentlichen Schlüssel kopieren wir dann wie folgt auf das Zielsystem:

[django@host .ssh]$  scp /home/django/.ssh/id_rsa.pub zielhost:/home/django/.ssh/id_rsa.pub

Anschließend wird der Schlüssel in die Datei authorized_keys kopiert. Diese Datei kann mehrere Schlüssel enthalten, daher ist das doppelte Umleitungszeichen wichtig, um eine evt. existierende Datei nicht versehentlich zu überschreiben. Somit wird der neue Schlüssel in die Datei hinzugefügt:

[django@zielhost .ssh]$ cat id_rsa.pub >> authorized_keys

Zu guter Letzt passen wir noch die Berechtigungen an und löschen die nicht mehr benötigte id_rsa.pub

[django@zielhost .ssh]$ chmod 600 authorized_keys
[django@zielhost .ssh]$ rm id_rsa.pub

Das Kopieren des Public-Keys auf unseren Zielhost mit Anpassen der Dateiberechtigungen kann man natürlich auch einfacher vornehmen. Man benutzt hierzu einfach den Befehl ssh-copy-id aus dem Paket openssh-clients.

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub testhost.intra.nausch.org

Die Angabe ~/.ssh/id_rsa.pub entspricht dabei dem Public-Key und testhost.intra.nausch.org dem gewünschten Zielhost.

Bei der Einführung von SSH Version 2 kam die Datei authorized_keys2 zum Einsatz. Seit OpenSSH 3.0 wird nun wiederum neben der authorized_keys2 wieder die authorized_keys verwendet. In unserem Fall nutzen wir in unserem obigen Beispiel daher nur noch die Schlüsseldatei authorized_keys.

Folgende Zeilen müssen wir in der Datei /etc/ssh/sshd_config anpassen:

 # vim /etc/ssh/sshd_config
PermitRootLogin yes
RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys

Anschließend starten wir mit

# service sshd restart

den ssh-Daemon neu und melden uns mit ssh zielhost am entfernten Rechner an.

Das war's eigentlich schon. Im Moment kann sich der user mittels rsa-key oder seinem Passwort anmelden -es funktionieren beide Verfahren. Das kann während der Umstiegphase von Passwörtern auf Schlüssel wichtig sein, um sich z.B. nicht versehentlich selbst auszusperren. Schlägt die Anmeldung mit dem fehl, tritt wieder die Passwortauthentifizierung in Kraft.

Wenn jedoch alles wunschgemäß funktioniert sollte man in der /etc/ssh/sshd_config des Zielsystems folgenden Eintrag freischalten:

 # vim /etc/ssh/sshd_config
PasswordAuthentication no

Anschließend den daemon wieder mittels:

# service sshd restart

neu starten.

Somit sind dann nur noch Userlogins zugelassen, die einen Publikkey auf dem Zielsystem besitzen.

Wichtig ist jedoch immer:

Der User muß selbst darauf achten, dass sein privater Schlüssel nicht in fremde Hände gelangt! Will man noch sicherer gehen, vergibt man, wie Eingangs bereits erwähnt, bei der Erzeugung des Schlüssels eine Passphrase. Diese muss er User dann aber bei jedem neuen Verbindungsaufbau angeben!

Damit der ssh-Daemon sshd automatisch bei jedem Systemstart startet, kann die Einrichtung eines Start-Scripts über folgenden Befehl erreicht werden:

# chkconfig sshd on

Ein Überprüfung ob der Dienst (Daemon) sshd wirklich bei jedem Systemstart automatisch mit gestartet wird, kann durch folgenden Befehl erreicht werden:

# chkconfig --list | grep sshd
sshd            0:Aus   1:Aus   2:Ein   3:Ein   4:Ein   5:Ein   6:Aus

Wichtig ist jeweils der Schalter on bei den Runleveln - 2 3 4 5.

Damit man nicht bei jedem anmelden am entfernten Rechner, die Passphrase erneut eingeben müssen, nutzen wir nun den ssh-agent.

Im Homeverzeichnis des remote-clients legen wir ein Verzeichnis autostart an:

$ mkir /home/django/.config/autostart

Dort legen wir die Datei ssh-add.desktop mit folgendem Inhalt an:

[Desktop Entry]
Name=No name
Encoding=UTF-8
Version=1.0
Exec=ssh-add
X-GNOME-Autostart-enabled=true

Somit wird beim nächsten Amelden am X-Gnome-Desktop die passphrase einmalig abgefragt und beim Anmelden am Remotesystem mit übertragen.

Oft steht man vor einem Problem, dass man ein Host nicht direkt via ssh erreichbar ist, man aber dennoch zur Adminsitration dort hin möchte oder gar Dateien via scp kopieren möchte.

Schauenm wir uns hierzu einfach mal nachstehende Skizze an.

Von der Admin-Workstation aus, wollen wir nun nicht nur zum nächstgelegenen Host springen, sondern auch zum übernächsten oder gar zu einem Host im Internet, den wir aber aus Sicherheitsgründen nicht direkt erreichen dürfen und auch können.

<uml width=775 title=„Grafische System-Übersicht“>

state Firewall_A {

Firewall_A : -----------
Firewall_A : A-Firewall
Firewall_A : -----------

}

state Internet { state fremdgehostetes_System

fremdgehostetes_System : Host beim Housing-Provider
fremdgehostetes_System : Hostname <was-das-auch-immer-für-ein geiler-FQDN-sein-mag>
fremdgehostetes_System : IP-Adresse: aa-bb-cc-dd

}

state DMZ {

state bredmz {
  bredmz : EDMZ-Netzwerkswitch (bredmz)
  bredmz : Netz:10.0.0.0/24
}
  state bridmz {
  bridmz : EDMZ-Netzwerkswitch (bridmz)
  bridmz : Netz:10.10.0.0/24
}
state edmz_switch {
  edmz_switch : EDMZ-Switch 
  edmz_switch : Netgear Typ: x
}
state FWB {
  FWB : FQDN: vml000010.dmz.nausch.org
  FWB : ------------------------------------
  FWB : Services: iptables
}
state FWC {
  FWC : FQDN: vml000020.dmz.nausch.org
  FWC : ------------------------------------
  FWC : Services: iptables
}

state DMZ_HOSTs {

state IDMZ_Repository_Host {
   IDMZ_Repository_Host : FQDN: vml000050.dmz.nausch.org
   IDMZ_Repository_Host : CNAME : syslog, tftp, install
   IDMZ_Repository_Host : IP (IDMZ) : eth0 - 52:54:00:19:08:67 - 10.0.0.50
   IDMZ_Repository_Host : Services : syslog, httpd, rpm-repository, tftp/pxe 
}
state EDMZ_Repository_Host {
   EDMZ_Repository_Host : FQDN: vml100080.dmz.nausch.org
   EDMZ_Repository_Host : CNAME : mail
   EDMZ_Repository_Host : IP (EDMZ) : eth0 - 52:54:00:14:12:71 - 10.0.0.50
   EDMZ_Repository_Host : Services : syslog, httpd, rpm-repository, tftp/pxe 
}

} }

state Intranet {

state Switch {
  Switch : Physikalischer Netzwerk-Switch
  Switch : Netz 10.10.10.0/26
}
state Workstation {
  Workstation : Gerät: Djangos Admin-Workstation
  Workstation : Hostname: pml010040
  Workstation : CNAME: office-work
  Workstation : MAC: 
  Workstation : IP:10.10.10.40
}

}

FWB -down-> edmz_switch  
bredmz -down-> FWB  
FWC -up-> bredmz
FWC -up-> bridmz
bredmz -up-> EDMZ_Repository_Host
bridmz -up-> IDMZ_Repository_Host
     
Switch -up-> FWC

Workstation -up-> Switch
edmz_switch --> Firewall_A
Firewall_A -right-> fremdgehostetes_System

</uml>

manuelle Sprünge

Die vermutlich naheliegendste Variante ist vermutlich der jeweils manuelle Spring zum nächsten Host. Damit wir in unserem Beispiel die A-Firewall erreichen können springen wir nacheinander zum jeweilig nächsten Host. Mit Hilfe der Option -A nutzen wir dabei die SSH-Key-Forwarding-Option des SSH-Agenten.

 $ ssh -A firewall-c.idmz.nausch.org
 $ ssh -A firewall-b.edmz.nausch.org
 $ ssh -A firewall-a.nausch.org

Na ja, komfortabel ist das nicht gerade und beim Kopieren von Daten von Ende zu Ende nervt das doch gewaltig, oder?

verkette Sprünge

O.K. wird sich da der ein oder andere sagen, dann verkette ich die Sprünge doch einfach.

 $ ssh -A -t firewall-c.idmz.nausch.org ssh -A -t firewall-b.edmz.nausch.org ssh -A firewall-a.nausch.org

Oder ich schreib mir jeweils kleine bash-scripte zum Springen

 $ vim ~/bin/fwa-jump
~/bin/fwa-jump
# /bin/bash
ssh -t -A -Y firewall-c.idmz.nausch.org 'ssh -Y -A -l swat maill.idmz.nausch.org'

Na ja, das Kopieren geht immer noch nur von Host zu Host, oder eben mit einer verketteten Befehlsfolge oder eigenen Bash-Scripten.

ssh mit ProxyCommand und netcat

Die Komfortabelste Variante ist nun die Nutzung der Option ProxyCommand. Hierzu legen wir uns einmalig eine entsprechende Konfigurationsdatei auf unserer Administrations-Workstation mit nachfolgendem Inhalt an.

 $ vim ~/.ssh/config
~/.ssh/config
# Django : 2012-06-13
# ssh-jumps über mehrere Sprunghosts
 
# Erster Sprunghost (fwc) - direkt erreichbar
# Host -->  fwc
Host fwc
    Hostname firewall-c.idmz.nausch.org
 
# Zweiter Sprunghost (fwb) - nur über fwc erreichbar
# Host -->  fwc --> fwb
Host fwb
    Hostname firewall-b.edmz.nausch.org
    ProxyCommand  ssh fwc nc -w 120 %h %p
 
# Dritter Sprunghost (fwa) - nur über fwb erreichbar
# Host --> fwc --> fwb --> fwa 
Host fwa
    Hostname firewall-a.nausch.org
    ProxyCommand  ssh fwb nc -w 120 %h %p
 
# externer Server im Internet nur über externe Firewall "A" erreichbar
# also: Host --> fwc --> fwb --> fwa --> daxie
Host daxie
    Hostname <was-das-auch-immer-für-ein geiler-FQDN-sein-mag>
    ProxyCommand  ssh -l root -i ~/.ssh/id_rsa_daxie -2 -4 fwa nc -w 120 %h %p

Anschließend passen wir noch die Dateiberechtigungen an, damit ssh später nicht mäkelt.

 $ chmod 600 ~/.ssh/config

Auf den Sprunghosts wird das Paket netcat benötigt. Wenn dies noch nicht bei der Grundinstallation unseres Systems bereits installiert wurde, werden wir dies nun noch nachholen.

 # yum install nc -y

Nun können wir ganz einfach direkt einen Tunnel zu unserem Zielhost aufspannen, genauso also würden wir den Zielhostz direkt „sehen“.

 $ ssh fwa

Auch können wir nun ohne großem Heckmeck Dateien von einem Ende zum anderen Ende kopieren.

 $ scp ~/Downloads/enigmail-1.4-sm+tb.xpi daxie:/tmp/
 $ scp daxie:/home/baby/Photos/Bild_001.png .

Links

Diese Website verwendet Cookies. Durch die Nutzung der Website stimmen Sie dem Speichern von Cookies auf Ihrem Computer zu. Außerdem bestätigen Sie, dass Sie unsere Datenschutzbestimmungen gelesen und verstanden haben. Wenn Sie nicht einverstanden sind, verlassen Sie die Website.Weitere Information
  • centos/ssh-install.1478979255.txt.gz
  • Zuletzt geändert: 12.11.2016 19:34.
  • von django