centos:ssh-install

Dies ist eine alte Version des Dokuments!


Secure Shell - ssh

openSSH LogoBei Internetdiensten wie eMail oder Web haben sich verschlüsselte Datenübertragungen mit SSL/TLS ohne Eingriffe in das Originalprotokoll durchgesetzt. Bei den klassischen unverschlüsselten Unix-Diensten zum Arbeiten mit entfernten Rechnern oder zur Datenübertragung auf andere Rechner - z.B. telnet, rcp und rsh - erfolgt eine alternative Lösung mittels OpenSSH.

Die für die Secure-Shell benötigten Pakete werden i.d.R. bereits bei der Erstinstallation erfolgreich ins System eingebettet. Bei Centos teilen sich die Programme der Programmsuite auf folgende Pakete auf:

  • openssh : Die OpenSSH-Implementierung der SSH Protokoll-Versionen 2 (und 1)
  • openssh-clients : Die OpenSSH-Client-Anwendungen
  • openssh-server : Der OpenSSH-Server Daemon
  • openssh-askpass : Passphrase-Dialog für OpenSSH und X

Mittels rpm -qil können wir überprüfen, welche Programme, Konfigurationsdateien und Dokumentationen beim Paket openssh installiert wurden.

 # rpm -qil openssh
Name        : openssh
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Wed 23 Mar 2016 07:14:52 PM CET
Group       : Applications/Internet
Size        : 1450050
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:22:48 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : An open source implementation of SSH protocol versions 1 and 2
Description :
SSH (Secure SHell) is a program for logging into and executing
commands on a remote machine. SSH is intended to replace rlogin and
rsh, and to provide secure encrypted communications between two
untrusted hosts over an insecure network. X11 connections and
arbitrary TCP/IP ports can also be forwarded over the secure channel.

OpenSSH is OpenBSD's version of the last free version of SSH, bringing
it up to date in terms of security and features.

This package includes the core files necessary for both the OpenSSH
client and server. To make this package useful, you should also
install openssh-clients, openssh-server, or both.
/etc/ssh
/etc/ssh/moduli
/usr/bin/ssh-keygen
/usr/libexec/openssh
/usr/libexec/openssh/ctr-cavstest
/usr/libexec/openssh/ssh-keysign
/usr/share/doc/openssh-6.6.1p1
/usr/share/doc/openssh-6.6.1p1/CREDITS
/usr/share/doc/openssh-6.6.1p1/ChangeLog
/usr/share/doc/openssh-6.6.1p1/INSTALL
/usr/share/doc/openssh-6.6.1p1/OVERVIEW
/usr/share/doc/openssh-6.6.1p1/PROTOCOL
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.agent
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.certkeys
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.chacha20poly1305
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.key
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.krl
/usr/share/doc/openssh-6.6.1p1/PROTOCOL.mux
/usr/share/doc/openssh-6.6.1p1/README
/usr/share/doc/openssh-6.6.1p1/README.dns
/usr/share/doc/openssh-6.6.1p1/README.platform
/usr/share/doc/openssh-6.6.1p1/README.privsep
/usr/share/doc/openssh-6.6.1p1/README.tun
/usr/share/doc/openssh-6.6.1p1/TODO
/usr/share/licenses/openssh-6.6.1p1
/usr/share/licenses/openssh-6.6.1p1/LICENCE
/usr/share/man/man1/ssh-keygen.1.gz
/usr/share/man/man8/ssh-keysign.8.gz

Beim Paket openssh-clients wird mitgeliefert:

 # rpm -qil openssh-clients
Name        : openssh-clients
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Wed 23 Mar 2016 07:14:59 PM CET
Group       : Applications/Internet
Size        : 2298871
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:22:58 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : An open source SSH client applications
Description :
OpenSSH is a free version of SSH (Secure SHell), a program for logging
into and executing commands on a remote machine. This package includes
the clients necessary to make encrypted connections to SSH servers.
/etc/ssh/ssh_config
/usr/bin/scp
/usr/bin/sftp
/usr/bin/slogin
/usr/bin/ssh
/usr/bin/ssh-add
/usr/bin/ssh-agent
/usr/bin/ssh-copy-id
/usr/bin/ssh-keyscan
/usr/lib64/fipscheck/ssh.hmac
/usr/libexec/openssh/ssh-pkcs11-helper
/usr/share/man/man1/scp.1.gz
/usr/share/man/man1/sftp.1.gz
/usr/share/man/man1/slogin.1.gz
/usr/share/man/man1/ssh-add.1.gz
/usr/share/man/man1/ssh-agent.1.gz
/usr/share/man/man1/ssh-copy-id.1.gz
/usr/share/man/man1/ssh-keyscan.1.gz
/usr/share/man/man1/ssh.1.gz
/usr/share/man/man5/ssh_config.5.gz
/usr/share/man/man8/ssh-pkcs11-helper.8.gz

Hingegen liefert uns openssh-server folgende Dateien:

 # rpm -qil openssh-server
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Wed 23 Mar 2016 07:14:58 PM CET
Group       : System Environment/Daemons
Size        : 943088
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:23:11 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : An open source SSH server daemon
Description :
OpenSSH is a free version of SSH (Secure SHell), a program for logging
into and executing commands on a remote machine. This package contains
the secure shell daemon (sshd). The sshd daemon allows SSH clients to
securely connect to your SSH server.
/etc/pam.d/sshd
/etc/ssh/sshd_config
/etc/sysconfig/sshd
/usr/lib/systemd/system/sshd-keygen.service
/usr/lib/systemd/system/sshd.service
/usr/lib/systemd/system/sshd.socket
/usr/lib/systemd/system/sshd@.service
/usr/lib64/fipscheck/sshd.hmac
/usr/libexec/openssh/sftp-server
/usr/sbin/sshd
/usr/sbin/sshd-keygen
/usr/share/man/man5/moduli.5.gz
/usr/share/man/man5/sshd_config.5.gz
/usr/share/man/man8/sftp-server.8.gz
/usr/share/man/man8/sshd.8.gz
/var/empty/sshd

Zu guter Letzt sehen wir uns noch das Paket openssh-askpass genauer an:

 # rpm -qil openssh-askpass
Name        : openssh-askpass
Version     : 6.6.1p1
Release     : 25.el7_2
Architecture: x86_64
Install Date: Sat 12 Nov 2016 08:22:40 PM CET
Group       : Applications/Internet
Size        : 15944
License     : BSD
Signature   : RSA/SHA256, Mon 21 Mar 2016 11:22:53 PM CET, Key ID 24c6a8a7f4a80eb5
Source RPM  : openssh-6.6.1p1-25.el7_2.src.rpm
Build Date  : Mon 21 Mar 2016 11:18:48 PM CET
Build Host  : worker1.bsys.centos.org
Relocations : (not relocatable)
Packager    : CentOS BuildSystem <http://bugs.centos.org>
Vendor      : CentOS
URL         : http://www.openssh.com/portable.html
Summary     : A passphrase dialog for OpenSSH and X
Description :
OpenSSH is a free version of SSH (Secure SHell), a program for logging
into and executing commands on a remote machine. This package contains
an X11 passphrase dialog for OpenSSH.
/etc/profile.d/gnome-ssh-askpass.csh
/etc/profile.d/gnome-ssh-askpass.sh
/usr/libexec/openssh/gnome-ssh-askpass
/usr/libexec/openssh/ssh-askpass

Wichtige Hinweise zur Absicherung von ssh finden sich im Kapitel 4.3.11. Securing SSH aus dem Red Hat Enterprise Linux Security Guide.

Die Optionen rund um opennssh findet amn wie immer, in der manpage zu ssh.

SSH(1)                                 BSD General Commands Manual                                SSH(1)

NAME
     ssh — OpenSSH SSH client (remote login program)

SYNOPSIS
     ssh [-1246AaCfgKkMNnqsTtVvXxYy] [-b bind_address] [-c cipher_spec] [-D [bind_address:]port]
         [-E log_file] [-e escape_char] [-F configfile] [-I pkcs11] [-i identity_file]
         [-L [bind_address:]port:host:hostport] [-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option]
         [-p port] [-Q cipher | cipher-auth | mac | kex | key] [-R [bind_address:]port:host:hostport]
         [-S ctl_path] [-W host:port] [-w local_tun[:remote_tun]] [user@]hostname [command]

DESCRIPTION
     ssh (SSH client) is a program for logging into a remote machine and for executing commands on a
     remote machine.  It is intended to replace rlogin and rsh, and provide secure encrypted communica‐
     tions between two untrusted hosts over an insecure network.  X11 connections and arbitrary TCP
     ports can also be forwarded over the secure channel.

     ssh connects and logs into the specified hostname (with optional user name).  The user must prove
     his/her identity to the remote machine using one of several methods depending on the protocol ver‐
     sion used (see below).

     If command is specified, it is executed on the remote host instead of a login shell.

     The options are as follows:

     -1      Forces ssh to try protocol version 1 only.

     -2      Forces ssh to try protocol version 2 only.

     -4      Forces ssh to use IPv4 addresses only.

     -6      Forces ssh to use IPv6 addresses only.

     -A      Enables forwarding of the authentication agent connection.  This can also be specified on a
             per-host basis in a configuration file.

             Agent forwarding should be enabled with caution.  Users with the ability to bypass file
             permissions on the remote host (for the agent's UNIX-domain socket) can access the local
             agent through the forwarded connection.  An attacker cannot obtain key material from the
             agent, however they can perform operations on the keys that enable them to authenticate
             using the identities loaded into the agent.

     -a      Disables forwarding of the authentication agent connection.

     -b bind_address
             Use bind_address on the local machine as the source address of the connection.  Only useful
             on systems with more than one address.

     -C      Requests compression of all data (including stdin, stdout, stderr, and data for forwarded
             X11 and TCP connections).  The compression algorithm is the same used by gzip(1), and the
             “level” can be controlled by the CompressionLevel option for protocol version 1.  Compres‐
             sion is desirable on modem lines and other slow connections, but will only slow down things
             on fast networks.  The default value can be set on a host-by-host basis in the configura‐
             tion files; see the Compression option.

     -c cipher_spec
             Selects the cipher specification for encrypting the session.

             Protocol version 1 allows specification of a single cipher.  The supported values are
             “3des”, “blowfish”, and “des”.  3des (triple-des) is an encrypt-decrypt-encrypt triple with
             three different keys.  It is believed to be secure.  blowfish is a fast block cipher; it
             appears very secure and is much faster than 3des.  des is only supported in the ssh client
             for interoperability with legacy protocol 1 implementations that do not support the 3des
             cipher.  Its use is strongly discouraged due to cryptographic weaknesses.  The default is
             “3des”.

             For protocol version 2, cipher_spec is a comma-separated list of ciphers listed in order of
             preference.  See the Ciphers keyword in ssh_config(5) for more information.

     -D [bind_address:]port
             Specifies a local “dynamic” application-level port forwarding.  This works by allocating a
             socket to listen to port on the local side, optionally bound to the specified bind_address.
             Whenever a connection is made to this port, the connection is forwarded over the secure
             channel, and the application protocol is then used to determine where to connect to from
             the remote machine.  Currently the SOCKS4 and SOCKS5 protocols are supported, and ssh will
             act as a SOCKS server.  Only root can forward privileged ports.  Dynamic port forwardings
             can also be specified in the configuration file.

             IPv6 addresses can be specified by enclosing the address in square brackets.  Only the
             superuser can forward privileged ports.  By default, the local port is bound in accordance
             with the GatewayPorts setting.  However, an explicit bind_address may be used to bind the
             connection to a specific address.  The bind_address of “localhost” indicates that the lis‐
             tening port be bound for local use only, while an empty address or ‘*’ indicates that the
             port should be available from all interfaces.

     -E log_file
             Append debug logs to log_file instead of standard error.

     -e escape_char
             Sets the escape character for sessions with a pty (default: ‘~’).  The escape character is
             only recognized at the beginning of a line.  The escape character followed by a dot (‘.’)
             closes the connection; followed by control-Z suspends the connection; and followed by
             itself sends the escape character once.  Setting the character to “none” disables any
             escapes and makes the session fully transparent.

     -F configfile
             Specifies an alternative per-user configuration file.  If a configuration file is given on
             the command line, the system-wide configuration file (/etc/ssh/ssh_config) will be ignored.
             The default for the per-user configuration file is ~/.ssh/config.

     -f      Requests ssh to go to background just before command execution.  This is useful if ssh is
             going to ask for passwords or passphrases, but the user wants it in the background.  This
             implies -n.  The recommended way to start X11 programs at a remote site is with something
             like ssh -f host xterm.

             If the ExitOnForwardFailure configuration option is set to “yes”, then a client started
             with -f will wait for all remote port forwards to be successfully established before plac‐
             ing itself in the background.

     -g      Allows remote hosts to connect to local forwarded ports.

     -I pkcs11
             Specify the PKCS#11 shared library ssh should use to communicate with a PKCS#11 token pro‐
             viding the user's private RSA key.

     -i identity_file
             Selects a file from which the identity (private key) for public key authentication is read.
             The default is ~/.ssh/identity for protocol version 1, and ~/.ssh/id_dsa, ~/.ssh/id_ecdsa,
             ~/.ssh/id_ed25519 and ~/.ssh/id_rsa for protocol version 2.  Identity files may also be
             specified on a per-host basis in the configuration file.  It is possible to have multiple
             -i options (and multiple identities specified in configuration files).  ssh will also try
             to load certificate information from the filename obtained by appending -cert.pub to iden‐
             tity filenames.

     -K      Enables GSSAPI-based authentication and forwarding (delegation) of GSSAPI credentials to
             the server.

     -k      Disables forwarding (delegation) of GSSAPI credentials to the server.

     -L [bind_address:]port:host:hostport
             Specifies that the given port on the local (client) host is to be forwarded to the given
             host and port on the remote side.  This works by allocating a socket to listen to port on
             the local side, optionally bound to the specified bind_address.  Whenever a connection is
             made to this port, the connection is forwarded over the secure channel, and a connection is
             made to host port hostport from the remote machine.  Port forwardings can also be specified
             in the configuration file.  IPv6 addresses can be specified by enclosing the address in
             square brackets.  Only the superuser can forward privileged ports.  By default, the local
             port is bound in accordance with the GatewayPorts setting.  However, an explicit
             bind_address may be used to bind the connection to a specific address.  The bind_address of
             “localhost” indicates that the listening port be bound for local use only, while an empty
             address or ‘*’ indicates that the port should be available from all interfaces.

     -l login_name
             Specifies the user to log in as on the remote machine.  This also may be specified on a
             per-host basis in the configuration file.

     -M      Places the ssh client into “master” mode for connection sharing.  Multiple -M options
             places ssh into “master” mode with confirmation required before slave connections are
             accepted.  Refer to the description of ControlMaster in ssh_config(5) for details.

     -m mac_spec
             Additionally, for protocol version 2 a comma-separated list of MAC (message authentication
             code) algorithms can be specified in order of preference.  See the MACs keyword for more
             information.

     -N      Do not execute a remote command.  This is useful for just forwarding ports (protocol ver‐
             sion 2 only).

     -n      Redirects stdin from /dev/null (actually, prevents reading from stdin).  This must be used
             when ssh is run in the background.  A common trick is to use this to run X11 programs on a
             remote machine.  For example, ssh -n shadows.cs.hut.fi emacs & will start an emacs on shad‐
             ows.cs.hut.fi, and the X11 connection will be automatically forwarded over an encrypted
             channel.  The ssh program will be put in the background.  (This does not work if ssh needs
             to ask for a password or passphrase; see also the -f option.)

     -O ctl_cmd
             Control an active connection multiplexing master process.  When the -O option is specified,
             the ctl_cmd argument is interpreted and passed to the master process.  Valid commands are:
             “check” (check that the master process is running), “forward” (request forwardings without
             command execution), “cancel” (cancel forwardings), “exit” (request the master to exit), and
             “stop” (request the master to stop accepting further multiplexing requests).

     -o option
             Can be used to give options in the format used in the configuration file.  This is useful
             for specifying options for which there is no separate command-line flag.  For full details
             of the options listed below, and their possible values, see ssh_config(5).

                   AddressFamily
                   BatchMode
                   BindAddress
                   CanonicalDomains
                   CanonicalizeFallbackLocal
                   CanonicalizeHostname
                   CanonicalizeMaxDots
                   CanonicalizePermittedCNAMEs
                   ChallengeResponseAuthentication
                   CheckHostIP
                   Cipher
                   Ciphers
                   ClearAllForwardings
                   Compression
                   CompressionLevel
                   ConnectionAttempts
                   ConnectTimeout
                   ControlMaster
                   ControlPath
                   ControlPersist
                   DynamicForward
                   EscapeChar
                   ExitOnForwardFailure
                   ForwardAgent
                   ForwardX11
                   ForwardX11Timeout
                   ForwardX11Trusted
                   GatewayPorts
                   GlobalKnownHostsFile
                   GSSAPIAuthentication
                   GSSAPIKeyExchange
                   GSSAPIClientIdentity
                   GSSAPIDelegateCredentials
                   GSSAPIRenewalForcesRekey
                   GSSAPITrustDns
                   GSSAPIKexAlgorithms
                   HashKnownHosts
                   Host
                   HostbasedAuthentication
                   HostKeyAlgorithms
                   HostKeyAlias
                   HostName
                   IdentityFile
                   IdentitiesOnly
                   IPQoS
                   KbdInteractiveAuthentication
                   KbdInteractiveDevices
                   KexAlgorithms
                   LocalCommand
                   LocalForward
                   LogLevel
                   MACs
                   Match
                   NoHostAuthenticationForLocalhost
                   NumberOfPasswordPrompts
                   PasswordAuthentication
                   PermitLocalCommand
                   PKCS11Provider
                   Port
                   PreferredAuthentications
                   Protocol
                   ProxyCommand
                   ProxyUseFdpass
                   PubkeyAuthentication
                   RekeyLimit
                   RemoteForward
                   RequestTTY
                   RhostsRSAAuthentication
                   RSAAuthentication
                   SendEnv
                   ServerAliveInterval
                   ServerAliveCountMax
                   StrictHostKeyChecking
                   TCPKeepAlive
                   Tunnel
                   TunnelDevice
                   UsePrivilegedPort
                   User
                   UserKnownHostsFile
                   VerifyHostKeyDNS
                   VisualHostKey
                   XAuthLocation

     -p port
             Port to connect to on the remote host.  This can be specified on a per-host basis in the
             configuration file.

     -Q cipher | cipher-auth | mac | kex | key
             Queries ssh for the algorithms supported for the specified version 2.  The available fea‐
             tures are: cipher (supported symmetric ciphers), cipher-auth (supported symmetric ciphers
             that support authenticated encryption), mac (supported message integrity codes), kex (key
             exchange algorithms), key (key types).

     -q      Quiet mode.  Causes most warning and diagnostic messages to be suppressed.

     -R [bind_address:]port:host:hostport
             Specifies that the given port on the remote (server) host is to be forwarded to the given
             host and port on the local side.  This works by allocating a socket to listen to port on
             the remote side, and whenever a connection is made to this port, the connection is for‐
             warded over the secure channel, and a connection is made to host port hostport from the
             local machine.

             Port forwardings can also be specified in the configuration file.  Privileged ports can be
             forwarded only when logging in as root on the remote machine.  IPv6 addresses can be speci‐
             fied by enclosing the address in square brackets.

             By default, the listening socket on the server will be bound to the loopback interface
             only.  This may be overridden by specifying a bind_address.  An empty bind_address, or the
             address ‘*’, indicates that the remote socket should listen on all interfaces.  Specifying
             a remote bind_address will only succeed if the server's GatewayPorts option is enabled (see
             sshd_config(5)).

             If the port argument is ‘0’, the listen port will be dynamically allocated on the server
             and reported to the client at run time.  When used together with -O forward the allocated
             port will be printed to the standard output.

     -S ctl_path
             Specifies the location of a control socket for connection sharing, or the string “none” to
             disable connection sharing.  Refer to the description of ControlPath and ControlMaster in
             ssh_config(5) for details.

     -s      May be used to request invocation of a subsystem on the remote system.  Subsystems are a
             feature of the SSH2 protocol which facilitate the use of SSH as a secure transport for
             other applications (eg. sftp(1)).  The subsystem is specified as the remote command.

     -T      Disable pseudo-tty allocation.

     -t      Force pseudo-tty allocation.  This can be used to execute arbitrary screen-based programs
             on a remote machine, which can be very useful, e.g. when implementing menu services.  Mul‐
             tiple -t options force tty allocation, even if ssh has no local tty.

     -V      Display the version number and exit.

     -v      Verbose mode.  Causes ssh to print debugging messages about its progress.  This is helpful
             in debugging connection, authentication, and configuration problems.  Multiple -v options
             increase the verbosity.  The maximum is 3.

     -W host:port
             Requests that standard input and output on the client be forwarded to host on port over the
             secure channel.  Implies -N, -T, ExitOnForwardFailure and ClearAllForwardings.  Works with
             Protocol version 2 only.

     -w local_tun[:remote_tun]
             Requests tunnel device forwarding with the specified tun(4) devices between the client
             (local_tun) and the server (remote_tun).

             The devices may be specified by numerical ID or the keyword “any”, which uses the next
             available tunnel device.  If remote_tun is not specified, it defaults to “any”.  See also
             the Tunnel and TunnelDevice directives in ssh_config(5).  If the Tunnel directive is unset,
             it is set to the default tunnel mode, which is “point-to-point”.

     -X      Enables X11 forwarding.  This can also be specified on a per-host basis in a configuration
             file.

             X11 forwarding should be enabled with caution.  Users with the ability to bypass file per‐
             missions on the remote host (for the user's X authorization database) can access the local
             X11 display through the forwarded connection.  An attacker may then be able to perform
             activities such as keystroke monitoring.

             For this reason, X11 forwarding is subjected to X11 SECURITY extension restrictions by
             default.  Please refer to the ssh -Y option and the ForwardX11Trusted directive in
             ssh_config(5) for more information.

     -x      Disables X11 forwarding.

     -Y      Enables trusted X11 forwarding.  Trusted X11 forwardings are not subjected to the X11 SECU‐
             RITY extension controls.

     -y      Send log information using the syslog(3) system module.  By default this information is
             sent to stderr.

     ssh may additionally obtain configuration data from a per-user configuration file and a system-wide
     configuration file.  The file format and configuration options are described in ssh_config(5).

AUTHENTICATION
     The OpenSSH SSH client supports SSH protocols 1 and 2.  The default is to use protocol 2 only,
     though this can be changed via the Protocol option in ssh_config(5) or the -1 and -2 options (see
     above).  Both protocols support similar authentication methods, but protocol 2 is the default since
     it provides additional mechanisms for confidentiality (the traffic is encrypted using AES, 3DES,
     Blowfish, CAST128, or Arcfour) and integrity (hmac-md5, hmac-sha1, hmac-sha2-256, hmac-sha2-512,
     umac-64, umac-128, hmac-ripemd160).  Protocol 1 lacks a strong mechanism for ensuring the integrity
     of the connection.

     The methods available for authentication are: GSSAPI-based authentication, host-based authentica‐
     tion, public key authentication, challenge-response authentication, and password authentication.
     Authentication methods are tried in the order specified above, though protocol 2 has a configura‐
     tion option to change the default order: PreferredAuthentications.

     Host-based authentication works as follows: If the machine the user logs in from is listed in
     /etc/hosts.equiv or /etc/ssh/shosts.equiv on the remote machine, and the user names are the same on
     both sides, or if the files ~/.rhosts or ~/.shosts exist in the user's home directory on the remote
     machine and contain a line containing the name of the client machine and the name of the user on
     that machine, the user is considered for login.  Additionally, the server must be able to verify
     the client's host key (see the description of /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts,
     below) for login to be permitted.  This authentication method closes security holes due to IP
     spoofing, DNS spoofing, and routing spoofing.  [Note to the administrator: /etc/hosts.equiv,
     ~/.rhosts, and the rlogin/rsh protocol in general, are inherently insecure and should be disabled
     if security is desired.]

     Public key authentication works as follows: The scheme is based on public-key cryptography, using
     cryptosystems where encryption and decryption are done using separate keys, and it is unfeasible to
     derive the decryption key from the encryption key.  The idea is that each user creates a pub‐
     lic/private key pair for authentication purposes.  The server knows the public key, and only the
     user knows the private key.  ssh implements public key authentication protocol automatically, using
     one of the DSA, ECDSA, ED25519 or RSA algorithms.  Protocol 1 is restricted to using only RSA keys,
     but protocol 2 may use any.  The HISTORY section of ssl(8) contains a brief discussion of the DSA
     and RSA algorithms.

     The file ~/.ssh/authorized_keys lists the public keys that are permitted for logging in.  When the
     user logs in, the ssh program tells the server which key pair it would like to use for authentica‐
     tion.  The client proves that it has access to the private key and the server checks that the cor‐
     responding public key is authorized to accept the account.

     The user creates his/her key pair by running ssh-keygen(1).  This stores the private key in
     ~/.ssh/identity (protocol 1), ~/.ssh/id_dsa (protocol 2 DSA), ~/.ssh/id_ecdsa (protocol 2 ECDSA),
     ~/.ssh/id_ed25519 (protocol 2 ED25519), or ~/.ssh/id_rsa (protocol 2 RSA) and stores the public key
     in ~/.ssh/identity.pub (protocol 1), ~/.ssh/id_dsa.pub (protocol 2 DSA), ~/.ssh/id_ecdsa.pub (pro‐
     tocol 2 ECDSA), ~/.ssh/id_ed25519.pub (protocol 2 ED25519), or ~/.ssh/id_rsa.pub (protocol 2 RSA)
     in the user's home directory.  The user should then copy the public key to ~/.ssh/authorized_keys
     in his/her home directory on the remote machine.  The authorized_keys file corresponds to the con‐
     ventional ~/.rhosts file, and has one key per line, though the lines can be very long.  After this,
     the user can log in without giving the password.

     A variation on public key authentication is available in the form of certificate authentication:
     instead of a set of public/private keys, signed certificates are used.  This has the advantage that
     a single trusted certification authority can be used in place of many public/private keys.  See the
     CERTIFICATES section of ssh-keygen(1) for more information.

     The most convenient way to use public key or certificate authentication may be with an authentica‐
     tion agent.  See ssh-agent(1) for more information.

     Challenge-response authentication works as follows: The server sends an arbitrary "challenge" text,
     and prompts for a response.  Protocol 2 allows multiple challenges and responses; protocol 1 is
     restricted to just one challenge/response.  Examples of challenge-response authentication include
     BSD Authentication (see login.conf(5)) and PAM (some non-OpenBSD systems).

     Finally, if other authentication methods fail, ssh prompts the user for a password.  The password
     is sent to the remote host for checking; however, since all communications are encrypted, the pass‐
     word cannot be seen by someone listening on the network.

     ssh automatically maintains and checks a database containing identification for all hosts it has
     ever been used with.  Host keys are stored in ~/.ssh/known_hosts in the user's home directory.
     Additionally, the file /etc/ssh/ssh_known_hosts is automatically checked for known hosts.  Any new
     hosts are automatically added to the user's file.  If a host's identification ever changes, ssh
     warns about this and disables password authentication to prevent server spoofing or man-in-the-mid‐
     dle attacks, which could otherwise be used to circumvent the encryption.  The StrictHostKeyChecking
     option can be used to control logins to machines whose host key is not known or has changed.

     When the user's identity has been accepted by the server, the server either executes the given com‐
     mand, or logs into the machine and gives the user a normal shell on the remote machine.  All commu‐
     nication with the remote command or shell will be automatically encrypted.

     If a pseudo-terminal has been allocated (normal login session), the user may use the escape charac‐
     ters noted below.

     If no pseudo-tty has been allocated, the session is transparent and can be used to reliably trans‐
     fer binary data.  On most systems, setting the escape character to “none” will also make the ses‐
     sion transparent even if a tty is used.

     The session terminates when the command or shell on the remote machine exits and all X11 and TCP
     connections have been closed.

ESCAPE CHARACTERS
     When a pseudo-terminal has been requested, ssh supports a number of functions through the use of an
     escape character.

     A single tilde character can be sent as ~~ or by following the tilde by a character other than
     those described below.  The escape character must always follow a newline to be interpreted as spe‐
     cial.  The escape character can be changed in configuration files using the EscapeChar configura‐
     tion directive or on the command line by the -e option.

     The supported escapes (assuming the default ‘~’) are:

     ~.      Disconnect.

     ~^Z     Background ssh.

     ~#      List forwarded connections.

     ~&      Background ssh at logout when waiting for forwarded connection / X11 sessions to terminate.

     ~?      Display a list of escape characters.

     ~B      Send a BREAK to the remote system (only useful for SSH protocol version 2 and if the peer
             supports it).

     ~C      Open command line.  Currently this allows the addition of port forwardings using the -L, -R
             and -D options (see above).  It also allows the cancellation of existing port-forwardings
             with -KL[bind_address:]port for local, -KR[bind_address:]port for remote and
             -KD[bind_address:]port for dynamic port-forwardings.  !command allows the user to execute a
             local command if the PermitLocalCommand option is enabled in ssh_config(5).  Basic help is
             available, using the -h option.

     ~R      Request rekeying of the connection (only useful for SSH protocol version 2 and if the peer
             supports it).

     ~V      Decrease the verbosity (LogLevel) when errors are being written to stderr.

     ~v      Increase the verbosity (LogLevel) when errors are being written to stderr.

TCP FORWARDING
     Forwarding of arbitrary TCP connections over the secure channel can be specified either on the com‐
     mand line or in a configuration file.  One possible application of TCP forwarding is a secure con‐
     nection to a mail server; another is going through firewalls.

     In the example below, we look at encrypting communication between an IRC client and server, even
     though the IRC server does not directly support encrypted communications.  This works as follows:
     the user connects to the remote host using ssh, specifying a port to be used to forward connections
     to the remote server.  After that it is possible to start the service which is to be encrypted on
     the client machine, connecting to the same local port, and ssh will encrypt and forward the connec‐
     tion.

     The following example tunnels an IRC session from client machine “127.0.0.1” (localhost) to remote
     server “server.example.com”:

         $ ssh -f -L 1234:localhost:6667 server.example.com sleep 10
         $ irc -c '#users' -p 1234 pinky 127.0.0.1

     This tunnels a connection to IRC server “server.example.com”, joining channel “#users”, nickname
     “pinky”, using port 1234.  It doesn't matter which port is used, as long as it's greater than 1023
     (remember, only root can open sockets on privileged ports) and doesn't conflict with any ports
     already in use.  The connection is forwarded to port 6667 on the remote server, since that's the
     standard port for IRC services.

     The -f option backgrounds ssh and the remote command “sleep 10” is specified to allow an amount of
     time (10 seconds, in the example) to start the service which is to be tunnelled.  If no connections
     are made within the time specified, ssh will exit.

X11 FORWARDING
     If the ForwardX11 variable is set to “yes” (or see the description of the -X, -x, and -Y options
     above) and the user is using X11 (the DISPLAY environment variable is set), the connection to the
     X11 display is automatically forwarded to the remote side in such a way that any X11 programs
     started from the shell (or command) will go through the encrypted channel, and the connection to
     the real X server will be made from the local machine.  The user should not manually set DISPLAY.
     Forwarding of X11 connections can be configured on the command line or in configuration files.

     The DISPLAY value set by ssh will point to the server machine, but with a display number greater
     than zero.  This is normal, and happens because ssh creates a “proxy” X server on the server
     machine for forwarding the connections over the encrypted channel.

     ssh will also automatically set up Xauthority data on the server machine.  For this purpose, it
     will generate a random authorization cookie, store it in Xauthority on the server, and verify that
     any forwarded connections carry this cookie and replace it by the real cookie when the connection
     is opened.  The real authentication cookie is never sent to the server machine (and no cookies are
     sent in the plain).

     If the ForwardAgent variable is set to “yes” (or see the description of the -A and -a options
     above) and the user is using an authentication agent, the connection to the agent is automatically
     forwarded to the remote side.

VERIFYING HOST KEYS
     When connecting to a server for the first time, a fingerprint of the server's public key is pre‐
     sented to the user (unless the option StrictHostKeyChecking has been disabled).  Fingerprints can
     be determined using ssh-keygen(1):

           $ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key

     If the fingerprint is already known, it can be matched and the key can be accepted or rejected.
     Because of the difficulty of comparing host keys just by looking at hex strings, there is also sup‐
     port to compare host keys visually, using random art.  By setting the VisualHostKey option to
     “yes”, a small ASCII graphic gets displayed on every login to a server, no matter if the session
     itself is interactive or not.  By learning the pattern a known server produces, a user can easily
     find out that the host key has changed when a completely different pattern is displayed.  Because
     these patterns are not unambiguous however, a pattern that looks similar to the pattern remembered
     only gives a good probability that the host key is the same, not guaranteed proof.

     To get a listing of the fingerprints along with their random art for all known hosts, the following
     command line can be used:

           $ ssh-keygen -lv -f ~/.ssh/known_hosts

     If the fingerprint is unknown, an alternative method of verification is available: SSH fingerprints
     verified by DNS.  An additional resource record (RR), SSHFP, is added to a zonefile and the con‐
     necting client is able to match the fingerprint with that of the key presented.

     In this example, we are connecting a client to a server, “host.example.com”.  The SSHFP resource
     records should first be added to the zonefile for host.example.com:

           $ ssh-keygen -r host.example.com.

     The output lines will have to be added to the zonefile.  To check that the zone is answering fin‐
     gerprint queries:

           $ dig -t SSHFP host.example.com

     Finally the client connects:

           $ ssh -o "VerifyHostKeyDNS ask" host.example.com
           [...]
           Matching host key fingerprint found in DNS.
           Are you sure you want to continue connecting (yes/no)?

     See the VerifyHostKeyDNS option in ssh_config(5) for more information.

SSH-BASED VIRTUAL PRIVATE NETWORKS
     ssh contains support for Virtual Private Network (VPN) tunnelling using the tun(4) network pseudo-
     device, allowing two networks to be joined securely.  The sshd_config(5) configuration option
     PermitTunnel controls whether the server supports this, and at what level (layer 2 or 3 traffic).

     The following example would connect client network 10.0.50.0/24 with remote network 10.0.99.0/24
     using a point-to-point connection from 10.1.1.1 to 10.1.1.2, provided that the SSH server running
     on the gateway to the remote network, at 192.168.1.15, allows it.

     On the client:

           # ssh -f -w 0:1 192.168.1.15 true
           # ifconfig tun0 10.1.1.1 10.1.1.2 netmask 255.255.255.252
           # route add 10.0.99.0/24 10.1.1.2

     On the server:

           # ifconfig tun1 10.1.1.2 10.1.1.1 netmask 255.255.255.252
           # route add 10.0.50.0/24 10.1.1.1

     Client access may be more finely tuned via the /root/.ssh/authorized_keys file (see below) and the
     PermitRootLogin server option.  The following entry would permit connections on tun(4) device 1
     from user “jane” and on tun device 2 from user “john”, if PermitRootLogin is set to
     “forced-commands-only”:

       tunnel="1",command="sh /etc/netstart tun1" ssh-rsa ... jane
       tunnel="2",command="sh /etc/netstart tun2" ssh-rsa ... john

     Since an SSH-based setup entails a fair amount of overhead, it may be more suited to temporary set‐
     ups, such as for wireless VPNs.  More permanent VPNs are better provided by tools such as
     ipsecctl(8) and isakmpd(8).

ENVIRONMENT
     ssh will normally set the following environment variables:

     DISPLAY               The DISPLAY variable indicates the location of the X11 server.  It is auto‐
                           matically set by ssh to point to a value of the form “hostname:n”, where
                           “hostname” indicates the host where the shell runs, and ‘n’ is an integer ≥
                           1.  ssh uses this special value to forward X11 connections over the secure
                           channel.  The user should normally not set DISPLAY explicitly, as that will
                           render the X11 connection insecure (and will require the user to manually
                           copy any required authorization cookies).

     HOME                  Set to the path of the user's home directory.

     LOGNAME               Synonym for USER; set for compatibility with systems that use this variable.

     MAIL                  Set to the path of the user's mailbox.

     PATH                  Set to the default PATH, as specified when compiling ssh.

     SSH_ASKPASS           If ssh needs a passphrase, it will read the passphrase from the current ter‐
                           minal if it was run from a terminal.  If ssh does not have a terminal associ‐
                           ated with it but DISPLAY and SSH_ASKPASS are set, it will execute the program
                           specified by SSH_ASKPASS and open an X11 window to read the passphrase.  This
                           is particularly useful when calling ssh from a .xsession or related script.
                           (Note that on some machines it may be necessary to redirect the input from
                           /dev/null to make this work.)

     SSH_AUTH_SOCK         Identifies the path of a UNIX-domain socket used to communicate with the
                           agent.

     SSH_CONNECTION        Identifies the client and server ends of the connection.  The variable con‐
                           tains four space-separated values: client IP address, client port number,
                           server IP address, and server port number.

     SSH_ORIGINAL_COMMAND  This variable contains the original command line if a forced command is exe‐
                           cuted.  It can be used to extract the original arguments.

     SSH_TTY               This is set to the name of the tty (path to the device) associated with the
                           current shell or command.  If the current session has no tty, this variable
                           is not set.

     TZ                    This variable is set to indicate the present time zone if it was set when the
                           daemon was started (i.e. the daemon passes the value on to new connections).

     USER                  Set to the name of the user logging in.

     Additionally, ssh reads ~/.ssh/environment, and adds lines of the format “VARNAME=value” to the
     environment if the file exists and users are allowed to change their environment.  For more infor‐
     mation, see the PermitUserEnvironment option in sshd_config(5).

ENVIRONMENT
     SSH_USE_STRONG_RNG
             The reseeding of the OpenSSL random generator is usually done from /dev/urandom.  If the
             SSH_USE_STRONG_RNG environment variable is set to value other than 0 the OpenSSL random
             generator is reseeded from /dev/random.  The number of bytes read is defined by the
             SSH_USE_STRONG_RNG value.  Minimum is 14 bytes.  This setting is not recommended on the
             computers without the hardware random generator because insufficient entropy causes the
             connection to be blocked until enough entropy is available.

FILES
     ~/.rhosts
             This file is used for host-based authentication (see above).  On some machines this file
             may need to be world-readable if the user's home directory is on an NFS partition, because
             sshd(8) reads it as root.  Additionally, this file must be owned by the user, and must not
             have write permissions for anyone else.  The recommended permission for most machines is
             read/write for the user, and not accessible by others.

     ~/.shosts
             This file is used in exactly the same way as .rhosts, but allows host-based authentication
             without permitting login with rlogin/rsh.

     ~/.ssh/
             This directory is the default location for all user-specific configuration and authentica‐
             tion information.  There is no general requirement to keep the entire contents of this
             directory secret, but the recommended permissions are read/write/execute for the user, and
             not accessible by others.

     ~/.ssh/authorized_keys
             Lists the public keys (DSA, ECDSA, ED25519, RSA) that can be used for logging in as this
             user.  The format of this file is described in the sshd(8) manual page.  This file is not
             highly sensitive, but the recommended permissions are read/write for the user, and not
             accessible by others.

     ~/.ssh/config
             This is the per-user configuration file.  The file format and configuration options are
             described in ssh_config(5).  Because of the potential for abuse, this file must have strict
             permissions: read/write for the user, and not writable by others.

     ~/.ssh/environment
             Contains additional definitions for environment variables; see ENVIRONMENT, above.

     ~/.ssh/identity
     ~/.ssh/id_dsa
     ~/.ssh/id_ecdsa
     ~/.ssh/id_ed25519
     ~/.ssh/id_rsa
             Contains the private key for authentication.  These files contain sensitive data and should
             be readable by the user but not accessible by others (read/write/execute).  ssh will simply
             ignore a private key file if it is accessible by others.  It is possible to specify a
             passphrase when generating the key which will be used to encrypt the sensitive part of this
             file using 3DES.

     ~/.ssh/identity.pub
     ~/.ssh/id_dsa.pub
     ~/.ssh/id_ecdsa.pub
     ~/.ssh/id_ed25519.pub
     ~/.ssh/id_rsa.pub
             Contains the public key for authentication.  These files are not sensitive and can (but
             need not) be readable by anyone.

     ~/.ssh/known_hosts
             Contains a list of host keys for all hosts the user has logged into that are not already in
             the systemwide list of known host keys.  See sshd(8) for further details of the format of
             this file.

     ~/.ssh/rc
             Commands in this file are executed by ssh when the user logs in, just before the user's
             shell (or command) is started.  See the sshd(8) manual page for more information.

     /etc/hosts.equiv
             This file is for host-based authentication (see above).  It should only be writable by
             root.

     /etc/ssh/shosts.equiv
             This file is used in exactly the same way as hosts.equiv, but allows host-based authentica‐
             tion without permitting login with rlogin/rsh.

     /etc/ssh/ssh_config
             Systemwide configuration file.  The file format and configuration options are described in
             ssh_config(5).

     /etc/ssh/ssh_host_key
     /etc/ssh/ssh_host_dsa_key
     /etc/ssh/ssh_host_ecdsa_key
     /etc/ssh/ssh_host_ed25519_key
     /etc/ssh/ssh_host_rsa_key
             These files contain the private parts of the host keys and are used for host-based authen‐
             tication.  If protocol version 1 is used, ssh must be setuid root, since the host key is
             readable only by root.  For protocol version 2, ssh uses ssh-keysign(8) to access the host
             keys, eliminating the requirement that ssh be setuid root when host-based authentication is
             used.  By default ssh is not setuid root.

     /etc/ssh/ssh_known_hosts
             Systemwide list of known host keys.  This file should be prepared by the system administra‐
             tor to contain the public host keys of all machines in the organization.  It should be
             world-readable.  See sshd(8) for further details of the format of this file.

     /etc/ssh/sshrc
             Commands in this file are executed by ssh when the user logs in, just before the user's
             shell (or command) is started.  See the sshd(8) manual page for more information.

EXIT STATUS
     ssh exits with the exit status of the remote command or with 255 if an error occurred.

IPV6
     IPv6 address can be used everywhere where IPv4 address. In all entries must be the IPv6 address
     enclosed in square brackets. Note: The square brackets are metacharacters for the shell and must be
     escaped in shell.

SEE ALSO
     scp(1), sftp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssh-keyscan(1), tun(4), hosts.equiv(5),
     ssh_config(5), ssh-keysign(8), sshd(8)

STANDARDS
     S. Lehtinen and C. Lonvick, The Secure Shell (SSH) Protocol Assigned Numbers, RFC 4250, January
     2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Protocol Architecture, RFC 4251, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Authentication Protocol, RFC 4252, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Transport Layer Protocol, RFC 4253, January 2006.

     T. Ylonen and C. Lonvick, The Secure Shell (SSH) Connection Protocol, RFC 4254, January 2006.

     J. Schlyter and W. Griffin, Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints, RFC
     4255, January 2006.

     F. Cusack and M. Forssen, Generic Message Exchange Authentication for the Secure Shell Protocol
     (SSH), RFC 4256, January 2006.

     J. Galbraith and P. Remaker, The Secure Shell (SSH) Session Channel Break Extension, RFC 4335,
     January 2006.

     M. Bellare, T. Kohno, and C. Namprempre, The Secure Shell (SSH) Transport Layer Encryption Modes,
     RFC 4344, January 2006.

     B. Harris, Improved Arcfour Modes for the Secure Shell (SSH) Transport Layer Protocol, RFC 4345,
     January 2006.

     M. Friedl, N. Provos, and W. Simpson, Diffie-Hellman Group Exchange for the Secure Shell (SSH)
     Transport Layer Protocol, RFC 4419, March 2006.

     J. Galbraith and R. Thayer, The Secure Shell (SSH) Public Key File Format, RFC 4716, November 2006.

     D. Stebila and J. Green, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer,
     RFC 5656, December 2009.

     A. Perrig and D. Song, Hash Visualization: a New Technique to improve Real-World Security, 1999,
     International Workshop on Cryptographic Techniques and E-Commerce (CrypTEC '99).

AUTHORS
     OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.  Aaron Camp‐
     bell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added
     newer features and created OpenSSH.  Markus Friedl contributed the support for SSH protocol ver‐
     sions 1.5 and 2.0.

BSD                                         November 12, 2016                                        BSD

Auch wenn Passworte bei ssh verschlüsselt übertragen werden, wollen wir zwei wesentliche Aspekte bei Verwendung der ssh berücksichtigen:

  1. Der Benutzer root soll sich bei unseren Systemen nicht mehr remote anmelden dürfen. Lediglich ein oder die berechtigten Nutzern erhalten die Erlaubnis, von entfernter Stelle sich anzumelden. Via su - kann dann der berechtigte Administrator, root-Rechte erhalten!
  2. Wir werden Key-basierte Anmeldungen verwenden und keine Anmeldungen mit Passwort zulassen. Somit laufen wir nicht in Gefahr, Zugänge durch Trivialpassworte angreifbar zu machen. Stattdessen werden wir uns für unsere Administratoren und berechtigten Nutzern, ein Schlüsselpaar bestehend aus privaten und öffentlichen Schlüssel erzeugen. Bei der Erzeugung dieses Schlüsselpaares werden wir eine Schlüsselpasswort (passphrase) angeben, welches Zur Nutzung des Schlüssel abgefragt wird.

Zum Erstellen eines Schlüsselpaares nutzen wir das Programm ssh-keygen. Einen Überberlick über die möglichen Optionen erhalten wir beim Abruf der zugehörigen manpage.

 # man ssh-keygen
SSH-KEYGEN(1)                          BSD General Commands Manual                         SSH-KEYGEN(1)

NAME
     ssh-keygen — authentication key generation, management and conversion

SYNOPSIS
     ssh-keygen [-q] [-b bits] [-t type] [-N new_passphrase] [-C comment] [-f output_keyfile]
     ssh-keygen -p [-P old_passphrase] [-N new_passphrase] [-f keyfile]
     ssh-keygen -i [-m key_format] [-f input_keyfile]
     ssh-keygen -e [-m key_format] [-f input_keyfile]
     ssh-keygen -y [-f input_keyfile]
     ssh-keygen -c [-P passphrase] [-C comment] [-f keyfile]
     ssh-keygen -l [-f input_keyfile]
     ssh-keygen -B [-f input_keyfile]
     ssh-keygen -D pkcs11
     ssh-keygen -F hostname [-f known_hosts_file] [-l]
     ssh-keygen -H [-f known_hosts_file]
     ssh-keygen -R hostname [-f known_hosts_file]
     ssh-keygen -r hostname [-f input_keyfile] [-g]
     ssh-keygen -G output_file [-v] [-b bits] [-M memory] [-S start_point]
     ssh-keygen -T output_file -f input_file [-v] [-a rounds] [-J num_lines] [-j start_line]
                [-K checkpt] [-W generator]
     ssh-keygen -s ca_key -I certificate_identity [-h] [-n principals] [-O option]
                [-V validity_interval] [-z serial_number] file ...
     ssh-keygen -L [-f input_keyfile]
     ssh-keygen -A
     ssh-keygen -k -f krl_file [-u] [-s ca_public] [-z version_number] file ...
     ssh-keygen -Q -f krl_file file ...

DESCRIPTION
     ssh-keygen generates, manages and converts authentication keys for ssh(1).  ssh-keygen can create
     RSA keys for use by SSH protocol version 1 and DSA, ECDSA, ED25519 or RSA keys for use by SSH pro‐
     tocol version 2.  The type of key to be generated is specified with the -t option.  If invoked
     without any arguments, ssh-keygen will generate an RSA key for use in SSH protocol 2 connections.

     ssh-keygen is also used to generate groups for use in Diffie-Hellman group exchange (DH-GEX).  See
     the MODULI GENERATION section for details.

     Finally, ssh-keygen can be used to generate and update Key Revocation Lists, and to test whether
     given keys have been revoked by one.  See the KEY REVOCATION LISTS section for details.

     Normally each user wishing to use SSH with public key authentication runs this once to create the
     authentication key in ~/.ssh/identity, ~/.ssh/id_dsa, ~/.ssh/id_ecdsa, ~/.ssh/id_ed25519 or
     ~/.ssh/id_rsa.  Additionally, the system administrator may use this to generate host keys, as seen
     in /etc/rc.

     Normally this program generates the key and asks for a file in which to store the private key.  The
     public key is stored in a file with the same name but “.pub” appended.  The program also asks for a
     passphrase.  The passphrase may be empty to indicate no passphrase (host keys must have an empty
     passphrase), or it may be a string of arbitrary length.  A passphrase is similar to a password,
     except it can be a phrase with a series of words, punctuation, numbers, whitespace, or any string
     of characters you want.  Good passphrases are 10-30 characters long, are not simple sentences or
     otherwise easily guessable (English prose has only 1-2 bits of entropy per character, and provides
     very bad passphrases), and contain a mix of upper and lowercase letters, numbers, and non-alphanu‐
     meric characters.  The passphrase can be changed later by using the -p option.

     There is no way to recover a lost passphrase.  If the passphrase is lost or forgotten, a new key
     must be generated and the corresponding public key copied to other machines.

     For RSA1 keys, there is also a comment field in the key file that is only for convenience to the
     user to help identify the key.  The comment can tell what the key is for, or whatever is useful.
     The comment is initialized to “user@host” when the key is created, but can be changed using the -c
     option.

     After a key is generated, instructions below detail where the keys should be placed to be acti‐
     vated.

     The options are as follows:

     -A      For each of the key types (rsa1, rsa, dsa, ecdsa and ed25519) for which host keys do not
             exist, generate the host keys with the default key file path, an empty passphrase, default
             bits for the key type, and default comment.  This is used by /etc/rc to generate new host
             keys.

     -a rounds
             When saving a new-format private key (i.e. an ed25519 key or any SSH protocol 2 key when
             the -o flag is set), this option specifies the number of KDF (key derivation function)
             rounds used.  Higher numbers result in slower passphrase verification and increased resis‐
             tance to brute-force password cracking (should the keys be stolen).

             When screening DH-GEX candidates ( using the -T command).  This option specifies the number
             of primality tests to perform.

     -B      Show the bubblebabble digest of specified private or public key file.

     -b bits
             Specifies the number of bits in the key to create.  For RSA keys, the minimum size is 768
             bits and the default is 2048 bits.  Generally, 2048 bits is considered sufficient.  DSA
             keys must be exactly 1024 bits as specified by FIPS 186-2.  For ECDSA keys, the -b flag
             determines the key length by selecting from one of three elliptic curve sizes: 256, 384 or
             521 bits.  Attempting to use bit lengths other than these three values for ECDSA keys will
             fail.  ED25519 keys have a fixed length and the -b flag will be ignored.

     -C comment
             Provides a new comment.

     -c      Requests changing the comment in the private and public key files.  This operation is only
             supported for RSA1 keys.  The program will prompt for the file containing the private keys,
             for the passphrase if the key has one, and for the new comment.

     -D pkcs11
             Download the RSA public keys provided by the PKCS#11 shared library pkcs11.  When used in
             combination with -s, this option indicates that a CA key resides in a PKCS#11 token (see
             the CERTIFICATES section for details).

     -e      This option will read a private or public OpenSSH key file and print to stdout the key in
             one of the formats specified by the -m option.  The default export format is “RFC4716”.
             This option allows exporting OpenSSH keys for use by other programs, including several com‐
             mercial SSH implementations.

     -F hostname
             Search for the specified hostname in a known_hosts file, listing any occurrences found.
             This option is useful to find hashed host names or addresses and may also be used in con‐
             junction with the -H option to print found keys in a hashed format.

     -f filename
             Specifies the filename of the key file.

     -G output_file
             Generate candidate primes for DH-GEX.  These primes must be screened for safety (using the
             -T option) before use.

     -g      Use generic DNS format when printing fingerprint resource records using the -r command.

     -H      Hash a known_hosts file.  This replaces all hostnames and addresses with hashed representa‐
             tions within the specified file; the original content is moved to a file with a .old suf‐
             fix.  These hashes may be used normally by ssh and sshd, but they do not reveal identifying
             information should the file's contents be disclosed.  This option will not modify existing
             hashed hostnames and is therefore safe to use on files that mix hashed and non-hashed
             names.

     -h      When signing a key, create a host certificate instead of a user certificate.  Please see
             the CERTIFICATES section for details.

     -I certificate_identity
             Specify the key identity when signing a public key.  Please see the CERTIFICATES section
             for details.

     -i      This option will read an unencrypted private (or public) key file in the format specified
             by the -m option and print an OpenSSH compatible private (or public) key to stdout.

     -J num_lines
             Exit after screening the specified number of lines while performing DH candidate screening
             using the -T option.

     -j start_line
             Start screening at the specified line number while performing DH candidate screening using
             the -T option.

     -K checkpt
             Write the last line processed to the file checkpt while performing DH candidate screening
             using the -T option.  This will be used to skip lines in the input file that have already
             been processed if the job is restarted.  This option allows importing keys from other soft‐
             ware, including several commercial SSH implementations.  The default import format is
             “RFC4716”.

     -k      Generate a KRL file.  In this mode, ssh-keygen will generate a KRL file at the location
             specified via the -f flag that revokes every key or certificate presented on the command
             line.  Keys/certificates to be revoked may be specified by public key file or using the
             format described in the KEY REVOCATION LISTS section.

     -L      Prints the contents of a certificate.

     -l      Show fingerprint of specified public key file.  Private RSA1 keys are also supported.  For
             RSA and DSA keys ssh-keygen tries to find the matching public key file and prints its fin‐
             gerprint.  If combined with -v, an ASCII art representation of the key is supplied with the
             fingerprint.

     -M memory
             Specify the amount of memory to use (in megabytes) when generating candidate moduli for DH-
             GEX.

     -m key_format
             Specify a key format for the -i (import) or -e (export) conversion options.  The supported
             key formats are: “RFC4716” (RFC 4716/SSH2 public or private key), “PKCS8” (PEM PKCS8 public
             key) or “PEM” (PEM public key).  The default conversion format is “RFC4716”.

     -N new_passphrase
             Provides the new passphrase.

     -n principals
             Specify one or more principals (user or host names) to be included in a certificate when
             signing a key.  Multiple principals may be specified, separated by commas.  Please see the
             CERTIFICATES section for details.

     -O option
             Specify a certificate option when signing a key.  This option may be specified multiple
             times.  Please see the CERTIFICATES section for details.  The options that are valid for
             user certificates are:

             clear   Clear all enabled permissions.  This is useful for clearing the default set of per‐
                     missions so permissions may be added individually.

             force-command=command
                     Forces the execution of command instead of any shell or command specified by the
                     user when the certificate is used for authentication.

             no-agent-forwarding
                     Disable ssh-agent(1) forwarding (permitted by default).

             no-port-forwarding
                     Disable port forwarding (permitted by default).

             no-pty  Disable PTY allocation (permitted by default).

             no-user-rc
                     Disable execution of ~/.ssh/rc by sshd(8) (permitted by default).

             no-x11-forwarding
                     Disable X11 forwarding (permitted by default).

             permit-agent-forwarding
                     Allows ssh-agent(1) forwarding.

             permit-port-forwarding
                     Allows port forwarding.

             permit-pty
                     Allows PTY allocation.

             permit-user-rc
                     Allows execution of ~/.ssh/rc by sshd(8).

             permit-x11-forwarding
                     Allows X11 forwarding.

             source-address=address_list
                     Restrict the source addresses from which the certificate is considered valid.  The
                     address_list is a comma-separated list of one or more address/netmask pairs in CIDR
                     format.

             At present, no options are valid for host keys.

     -o      Causes ssh-keygen to save SSH protocol 2 private keys using the new OpenSSH format rather
             than the more compatible PEM format.  The new format has increased resistance to brute-
             force password cracking but is not supported by versions of OpenSSH prior to 6.5.  Ed25519
             keys always use the new private key format.

     -P passphrase
             Provides the (old) passphrase.

     -p      Requests changing the passphrase of a private key file instead of creating a new private
             key.  The program will prompt for the file containing the private key, for the old
             passphrase, and twice for the new passphrase.

     -Q      Test whether keys have been revoked in a KRL.

     -q      Silence ssh-keygen.

     -R hostname
             Removes all keys belonging to hostname from a known_hosts file.  This option is useful to
             delete hashed hosts (see the -H option above).

     -r hostname
             Print the SSHFP fingerprint resource record named hostname for the specified public key
             file.

     -S start
             Specify start point (in hex) when generating candidate moduli for DH-GEX.

     -s ca_key
             Certify (sign) a public key using the specified CA key.  Please see the CERTIFICATES sec‐
             tion for details.

             When generating a KRL, -s specifies a path to a CA public key file used to revoke certifi‐
             cates directly by key ID or serial number.  See the KEY REVOCATION LISTS section for
             details.

     -T output_file
             Test DH group exchange candidate primes (generated using the -G option) for safety.

     -t type
             Specifies the type of key to create.  The possible values are “rsa1” for protocol version 1
             and “dsa”, “ecdsa”, “ed25519”, or “rsa” for protocol version 2.

     -u      Update a KRL.  When specified with -k, keys listed via the command line are added to the
             existing KRL rather than a new KRL being created.

     -V validity_interval
             Specify a validity interval when signing a certificate.  A validity interval may consist of
             a single time, indicating that the certificate is valid beginning now and expiring at that
             time, or may consist of two times separated by a colon to indicate an explicit time inter‐
             val.  The start time may be specified as a date in YYYYMMDD format, a time in YYYYMMDDHH‐
             MMSS format or a relative time (to the current time) consisting of a minus sign followed by
             a relative time in the format described in the TIME FORMATS section of sshd_config(5).  The
             end time may be specified as a YYYYMMDD date, a YYYYMMDDHHMMSS time or a relative time
             starting with a plus character.

             For example: “+52w1d” (valid from now to 52 weeks and one day from now), “-4w:+4w” (valid
             from four weeks ago to four weeks from now), “20100101123000:20110101123000” (valid from
             12:30 PM, January 1st, 2010 to 12:30 PM, January 1st, 2011), “-1d:20110101” (valid from
             yesterday to midnight, January 1st, 2011).

     -v      Verbose mode.  Causes ssh-keygen to print debugging messages about its progress.  This is
             helpful for debugging moduli generation.  Multiple -v options increase the verbosity.  The
             maximum is 3.

     -W generator
             Specify desired generator when testing candidate moduli for DH-GEX.

     -y      This option will read a private OpenSSH format file and print an OpenSSH public key to std‐
             out.

     -z serial_number
             Specifies a serial number to be embedded in the certificate to distinguish this certificate
             from others from the same CA.  The default serial number is zero.

             When generating a KRL, the -z flag is used to specify a KRL version number.

MODULI GENERATION
     ssh-keygen may be used to generate groups for the Diffie-Hellman Group Exchange (DH-GEX) protocol.
     Generating these groups is a two-step process: first, candidate primes are generated using a fast,
     but memory intensive process.  These candidate primes are then tested for suitability (a CPU-inten‐
     sive process).

     Generation of primes is performed using the -G option.  The desired length of the primes may be
     specified by the -b option.  For example:

           # ssh-keygen -G moduli-2048.candidates -b 2048

     By default, the search for primes begins at a random point in the desired length range.  This may
     be overridden using the -S option, which specifies a different start point (in hex).

     Once a set of candidates have been generated, they must be screened for suitability.  This may be
     performed using the -T option.  In this mode ssh-keygen will read candidates from standard input
     (or a file specified using the -f option).  For example:

           # ssh-keygen -T moduli-2048 -f moduli-2048.candidates

     By default, each candidate will be subjected to 100 primality tests.  This may be overridden using
     the -a option.  The DH generator value will be chosen automatically for the prime under considera‐
     tion.  If a specific generator is desired, it may be requested using the -W option.  Valid genera‐
     tor values are 2, 3, and 5.

     Screened DH groups may be installed in /etc/ssh/moduli.  It is important that this file contains
     moduli of a range of bit lengths and that both ends of a connection share common moduli.

CERTIFICATES
     ssh-keygen supports signing of keys to produce certificates that may be used for user or host
     authentication.  Certificates consist of a public key, some identity information, zero or more
     principal (user or host) names and a set of options that are signed by a Certification Authority
     (CA) key.  Clients or servers may then trust only the CA key and verify its signature on a certifi‐
     cate rather than trusting many user/host keys.  Note that OpenSSH certificates are a different, and
     much simpler, format to the X.509 certificates used in ssl(8).

     ssh-keygen supports two types of certificates: user and host.  User certificates authenticate users
     to servers, whereas host certificates authenticate server hosts to users.  To generate a user cer‐
     tificate:

           $ ssh-keygen -s /path/to/ca_key -I key_id /path/to/user_key.pub

     The resultant certificate will be placed in /path/to/user_key-cert.pub.  A host certificate
     requires the -h option:

           $ ssh-keygen -s /path/to/ca_key -I key_id -h /path/to/host_key.pub

     The host certificate will be output to /path/to/host_key-cert.pub.

     It is possible to sign using a CA key stored in a PKCS#11 token by providing the token library
     using -D and identifying the CA key by providing its public half as an argument to -s:

           $ ssh-keygen -s ca_key.pub -D libpkcs11.so -I key_id host_key.pub

     In all cases, key_id is a "key identifier" that is logged by the server when the certificate is
     used for authentication.

     Certificates may be limited to be valid for a set of principal (user/host) names.  By default, gen‐
     erated certificates are valid for all users or hosts.  To generate a certificate for a specified
     set of principals:

           $ ssh-keygen -s ca_key -I key_id -n user1,user2 user_key.pub
           $ ssh-keygen -s ca_key -I key_id -h -n host.domain user_key.pub

     Additional limitations on the validity and use of user certificates may be specified through cer‐
     tificate options.  A certificate option may disable features of the SSH session, may be valid only
     when presented from particular source addresses or may force the use of a specific command.  For a
     list of valid certificate options, see the documentation for the -O option above.

     Finally, certificates may be defined with a validity lifetime.  The -V option allows specification
     of certificate start and end times.  A certificate that is presented at a time outside this range
     will not be considered valid.  By default, certificates are valid from UNIX Epoch to the distant
     future.

     For certificates to be used for user or host authentication, the CA public key must be trusted by
     sshd(8) or ssh(1).  Please refer to those manual pages for details.

KEY REVOCATION LISTS
     ssh-keygen is able to manage OpenSSH format Key Revocation Lists (KRLs).  These binary files spec‐
     ify keys or certificates to be revoked using a compact format, taking as little as one bit per cer‐
     tificate if they are being revoked by serial number.

     KRLs may be generated using the -k flag.  This option reads one or more files from the command line
     and generates a new KRL.  The files may either contain a KRL specification (see below) or public
     keys, listed one per line.  Plain public keys are revoked by listing their hash or contents in the
     KRL and certificates revoked by serial number or key ID (if the serial is zero or not available).

     Revoking keys using a KRL specification offers explicit control over the types of record used to
     revoke keys and may be used to directly revoke certificates by serial number or key ID without hav‐
     ing the complete original certificate on hand.  A KRL specification consists of lines containing
     one of the following directives followed by a colon and some directive-specific information.

     serial: serial_number[-serial_number]
             Revokes a certificate with the specified serial number.  Serial numbers are 64-bit values,
             not including zero and may be expressed in decimal, hex or octal.  If two serial numbers
             are specified separated by a hyphen, then the range of serial numbers including and between
             each is revoked.  The CA key must have been specified on the ssh-keygen command line using
             the -s option.

     id: key_id
             Revokes a certificate with the specified key ID string.  The CA key must have been speci‐
             fied on the ssh-keygen command line using the -s option.

     key: public_key
             Revokes the specified key.  If a certificate is listed, then it is revoked as a plain pub‐
             lic key.

     sha1: public_key
             Revokes the specified key by its SHA1 hash.

     KRLs may be updated using the -u flag in addition to -k.  When this option is specified, keys
     listed via the command line are merged into the KRL, adding to those already there.

     It is also possible, given a KRL, to test whether it revokes a particular key (or keys).  The -Q
     flag will query an existing KRL, testing each key specified on the commandline.  If any key listed
     on the command line has been revoked (or an error encountered) then ssh-keygen will exit with a
     non-zero exit status.  A zero exit status will only be returned if no key was revoked.

FILES
     ~/.ssh/identity
             Contains the protocol version 1 RSA authentication identity of the user.  This file should
             not be readable by anyone but the user.  It is possible to specify a passphrase when gener‐
             ating the key; that passphrase will be used to encrypt the private part of this file using
             3DES.  This file is not automatically accessed by ssh-keygen but it is offered as the
             default file for the private key.  ssh(1) will read this file when a login attempt is made.

     ~/.ssh/identity.pub
             Contains the protocol version 1 RSA public key for authentication.  The contents of this
             file should be added to ~/.ssh/authorized_keys on all machines where the user wishes to log
             in using RSA authentication.  There is no need to keep the contents of this file secret.

     ~/.ssh/id_dsa
     ~/.ssh/id_ecdsa
     ~/.ssh/id_ed25519
     ~/.ssh/id_rsa
             Contains the protocol version 2 DSA, ECDSA, ED25519 or RSA authentication identity of the
             user.  This file should not be readable by anyone but the user.  It is possible to specify
             a passphrase when generating the key; that passphrase will be used to encrypt the private
             part of this file using 128-bit AES.  This file is not automatically accessed by ssh-keygen
             but it is offered as the default file for the private key.  ssh(1) will read this file when
             a login attempt is made.

     ~/.ssh/id_dsa.pub
     ~/.ssh/id_ecdsa.pub
     ~/.ssh/id_ed25519.pub
     ~/.ssh/id_rsa.pub
             Contains the protocol version 2 DSA, ECDSA, ED25519 or RSA public key for authentication.
             The contents of this file should be added to ~/.ssh/authorized_keys on all machines where
             the user wishes to log in using public key authentication.  There is no need to keep the
             contents of this file secret.
             default file for the private key.  ssh(1) will read this file when a login attempt is made.

     ~/.ssh/identity.pub
             Contains the protocol version 1 RSA public key for authentication.  The contents of this
             file should be added to ~/.ssh/authorized_keys on all machines where the user wishes to log
             in using RSA authentication.  There is no need to keep the contents of this file secret.

     ~/.ssh/id_dsa
     ~/.ssh/id_ecdsa
     ~/.ssh/id_ed25519
     ~/.ssh/id_rsa
             Contains the protocol version 2 DSA, ECDSA, ED25519 or RSA authentication identity of the
             user.  This file should not be readable by anyone but the user.  It is possible to specify
             a passphrase when generating the key; that passphrase will be used to encrypt the private
             part of this file using 128-bit AES.  This file is not automatically accessed by ssh-keygen
             but it is offered as the default file for the private key.  ssh(1) will read this file when
             a login attempt is made.

     ~/.ssh/id_dsa.pub
     ~/.ssh/id_ecdsa.pub
     ~/.ssh/id_ed25519.pub
     ~/.ssh/id_rsa.pub
             Contains the protocol version 2 DSA, ECDSA, ED25519 or RSA public key for authentication.
             The contents of this file should be added to ~/.ssh/authorized_keys on all machines where
             the user wishes to log in using public key authentication.  There is no need to keep the
             contents of this file secret.

     /etc/ssh/moduli
             Contains Diffie-Hellman groups used for DH-GEX.  The file format is described in moduli(5).

ENVIRONMENT
     SSH_USE_STRONG_RNG
             The reseeding of the OpenSSL random generator is usually done from /dev/urandom.  If the
             SSH_USE_STRONG_RNG environment variable is set to value other than 0 the OpenSSL random
             generator is reseeded from /dev/random.  The number of bytes read is defined by the
             SSH_USE_STRONG_RNG value.  Minimum is 14 bytes.  This setting is not recommended on the
             computers without the hardware random generator because insufficient entropy causes the
             connection to be blocked until enough entropy is available.

SEE ALSO
     ssh(1), ssh-add(1), ssh-agent(1), moduli(5), sshd(8)

     The Secure Shell (SSH) Public Key File Format, RFC 4716, 2006.

AUTHORS
     OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.  Aaron Camp‐
     bell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many bugs, re-added
     newer features and created OpenSSH.  Markus Friedl contributed the support for SSH protocol ver‐
     sions 1.5 and 2.0.

BSD                                         November 13, 2016                                        BSD

Bevor wir uns die Entscheidung treffen können, welchen Schlüssel-Typ wir erzeugen wollen, müssen wir überlegen, von welchem System wir aus auf unseren Linux/CentOS-Host zugreifen wollen. Sind wir in der misslichen Lage und müssen von einem Windows-Rechner aus auf unseren Linux-Host zugreifen, müssen wir sicherheitstechnische Abstrichen machen, da putty z.B. nicht alle aktuiellen Cipher, MAC und Schlüsselaustauschmechanismen zu Verfügung stellt, die uns z.B der CentOS 7 Zielserver ggf. anbietet. Ähnliches gilt, wenn wir z.B. von einem CentOS 6 System auf eine aktuelles CentOS 7 System via ssh zugreifen wollen.

Hier empfiehlt es sich auf den beteiligten System zu überprüfen, welche Cipher, MACs, Schlüssel Typen und Key Exchange Algorithmen unterstützt werden. Zum Abfragen können wir den Befehl ssh mit der Option -Q verwenden.

Liste der unterstützten Cipher

 # ssh -Q cipher
3des-cbc
blowfish-cbc
cast128-cbc
arcfour
arcfour128
arcfour256
aes128-cbc
aes192-cbc
aes256-cbc
rijndael-cbc@lysator.liu.se
aes128-ctr
aes192-ctr
aes256-ctr
aes128-gcm@openssh.com
aes256-gcm@openssh.com
chacha20-poly1305@openssh.com

Liste der unterstützten MACs

 # ssh -Q mac
hmac-sha1
hmac-sha1-96
hmac-sha2-256
hmac-sha2-512
hmac-md5
hmac-md5-96
hmac-ripemd160
hmac-ripemd160@openssh.com
umac-64@openssh.com
umac-128@openssh.com
hmac-sha1-etm@openssh.com
hmac-sha1-96-etm@openssh.com
hmac-sha2-256-etm@openssh.com
hmac-sha2-512-etm@openssh.com
hmac-md5-etm@openssh.com
hmac-md5-96-etm@openssh.com
hmac-ripemd160-etm@openssh.com
umac-64-etm@openssh.com
umac-128-etm@openssh.com

Liste der unterstützten Schlüssel Typen

 # ssh -Q key
ssh-rsa
ssh-dss
ssh-ed25519
ecdsa-sha2-nistp256
ecdsa-sha2-nistp384
ecdsa-sha2-nistp521
ssh-rsa-cert-v01@openssh.com
ssh-dss-cert-v01@openssh.com
ecdsa-sha2-nistp256-cert-v01@openssh.com
ecdsa-sha2-nistp384-cert-v01@openssh.com
ecdsa-sha2-nistp521-cert-v01@openssh.com
ssh-rsa-cert-v00@openssh.com
ssh-dss-cert-v00@openssh.com
ssh-ed25519-cert-v01@openssh.com
null

Liste alller unterstützten Key Exchange Algorithmen

 # ssh -Q kex
diffie-hellman-group1-sha1
diffie-hellman-group14-sha1
diffie-hellman-group-exchange-sha1
diffie-hellman-group-exchange-sha256
ecdh-sha2-nistp256
ecdh-sha2-nistp384
ecdh-sha2-nistp521
diffie-hellman-group1-sha1
curve25519-sha256@libssh.org
gss-gex-sha1-
gss-group1-sha1-
gss-group14-sha1-

RSA Key

Im ersten Beispiel erzeugen wir uns einen 4096er RSA-Schlüssel für die Authentifizierung:

  $ ssh-keygen -b 4096 -t rsa -C django@nausch.org -f ~/.ssh/id_rsa4096_dmz
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /home/django/.ssh/id_rsa4096_dmz.
Your public key has been saved in /home/django/.ssh/id_rsa4096_dmz.pub.
The key fingerprint is:
44:8b:1a:4b:87:95:3a:23:af:65:b7:e6:1a:bf:98:3d django@nausch.org
The key's randomart image is:
+--[ RSA 4096]----+
|      ...        |
|     o.o .       |
|    +.o o        |
|  ..+= .         |
|   ooo  S        |
|    + .          |
|   +.. .         |
|  .  *E          |
|    ++=o         |
+-----------------+

Die passphrase die man hier angibt, wird später beim Anmelden auf dem entfernten Rechner abgefragt, oder vom ssh-agent bei der Anmeldung mitübergeben.

Nun liegen in dem Verzeichnis /home/django/.ssh zwei weitere Dateien:

# ll ~/.ssh/id_rsa*
-rw-------. 1 django django 3326 13. Nov 15:27 /home/django/.ssh/id_rsa4096_dmz
-rw-r--r--. 1 django django  743 13. Nov 15:27 /home/django/.ssh/id_rsa4096_dmz.pub

id_rsa4096_dmz enthält den privaten Schlüssel und sollte auf keinen Fall weitergegeben werden und darf auch nur für den Nutzer selbst lesbar sein! id_rsa4096_dmz.pub, der öffentliche Schlüssel, dagegen muss auf den Zielrechner kopiert werden.

ED25519 Key

Ob man in Zeiten von Überwachungsphantasten bei einer NSA oder BND, noch solhcen Schlüssel einsetzen kann und mag, muss natürlich jeder Admin für sich sekbst entscheiden. Auf solche Schlüssel muss man aber nicht mehr zwingend zurückgreifen, stehen doch aktuellere und zeitgemäße Cipher, MACs, Schlüssel Typen und Key Exchange Algorithmen zur Verfügung. Als Alternative zu einem RSA-Keys wollen wir nun nun einen ed25519 Schlüssels erzeugen. Ed25519 ist ein Elliptic Curve Signature Schema, welches beste Sicherheit bei vertretbaren Aufwand verspricht, als ECDSA oder DSA dies versprechen. Zur Auswahl sicherer kryptografischer Kurven bei der Elliptic-Curve Cryptography findet man auf der Seite hier hilfreiche Erklärungen und eine Gegenüberstellung der möglichen verschiedenen Alternativen.

 $ ssh-keygen -t ed25519 -o -a 100 -C django@nausch.org -f ~/.ssh/id_ed25519_dmz
Generating public/private ed25519 key pair.
Enter passphrase (empty for no passphrase): 
Enter same passphrase again: 
Your identification has been saved in /home/django/.ssh/id_ed25519_dmz.
Your public key has been saved in /home/django/.ssh/id_ed25519_dmz.pub.
The key fingerprint is:
a3:03:59:5c:1b:d3:60:2a:93:77:2a:9f:9d:fc:e8:68 django@nausch.org
The key's randomart image is:
+--[ED25519  256--+
|        *o       |
|     o + +.      |
|    + = o        |
|     * o         |
|    + . S        |
|     + = o       |
|      = +        |
|      Eo o       |
|     ...o .      |
+-----------------+

Die passphrase die man hier angibt, wird später beim Anmelden auf dem entfernten Rechner abgefragt, oder vom ssh-agent bei der Anmeldung mitübergeben.

Nun liegen in dem Verzeichnis /home/django/.ssh zwei weitere Dateien:

# ll ~/.ssh/*ed25519*
-rw-------. 1 django django 464  2. Nov 21:43 /home/django/.ssh/id_ed25519_dmz
-rw-r--r--. 1 django django  99  2. Nov 21:43 /home/django/.ssh/id_ed25519_dmz.pub

id_ed25519_dmz enthält den privaten Schlüssel und sollte auf keinen Fall weitergegeben werden und darf auch nur für den Nutzer selbst lesbar sein! id_ed25519_dmz.pub, der öffentliche Schlüssel, dagegen muss auf den Zielrechner kopiert werden.

Auf dem Zielrechner legen wir nun das Verzeichnis .ssh an und schützen es entsprechend.

[django@zielhost django]$ mkdir .ssh
[django@zielhost django]$ chmod 700 .ssh

Den öffentlichen Schlüssel kopieren wir dann wie folgt auf das Zielsystem; hatten wir uns einen RSA-key erstellt verwenden wir folgenden Aufruf:

 $  scp /home/django/.ssh/id_rsa4096_dmz.pub zielhost:/home/django/.ssh/

Anschließend wird der Schlüssel in die Datei authorized_keys kopiert. Diese Datei kann mehrere Schlüssel enthalten, daher ist das doppelte Umleitungszeichen wichtig, um eine evt. existierende Datei nicht versehentlich zu überschreiben. Somit wird der neue Schlüssel in die Datei hinzugefügt:

 $ cat id_rsa4096_dmz.pub >> authorized_keys

Zu guter Letzt passen wir noch die Berechtigungen an und löschen die nicht mehr benötigte id_rsa.pub

 $ chmod 600 authorized_keys
 $ rm id_rsa.pub

Das Kopieren des Public-Keys auf unseren Zielhost mit Anpassen der Dateiberechtigungen kann man natürlich auch einfacher vornehmen. Man benutzt hierzu einfach den Befehl ssh-copy-id aus dem Paket openssh-clients.

 $ ssh-copy-id -i ~/.ssh/id_rsa.pub testhost.intra.nausch.org

Die Angabe ~/.ssh/id_rsa.pub entspricht dabei dem Public-Key und testhost.intra.nausch.org dem gewünschten Zielhost.

Bei der Einführung von SSH Version 2 kam die Datei authorized_keys2 zum Einsatz. Seit OpenSSH 3.0 wird nun wiederum neben der authorized_keys2 wieder die authorized_keys verwendet. In unserem Fall nutzen wir in unserem obigen Beispiel daher nur noch die Schlüsseldatei authorized_keys.

Folgende Zeilen müssen wir in der Datei /etc/ssh/sshd_config anpassen:

 # vim /etc/ssh/sshd_config
PermitRootLogin yes
RSAAuthentication yes
PubkeyAuthentication yes
AuthorizedKeysFile .ssh/authorized_keys

Anschließend starten wir mit

# service sshd restart

den ssh-Daemon neu und melden uns mit ssh zielhost am entfernten Rechner an.

Das war's eigentlich schon. Im Moment kann sich der user mittels rsa-key oder seinem Passwort anmelden -es funktionieren beide Verfahren. Das kann während der Umstiegphase von Passwörtern auf Schlüssel wichtig sein, um sich z.B. nicht versehentlich selbst auszusperren. Schlägt die Anmeldung mit dem fehl, tritt wieder die Passwortauthentifizierung in Kraft.

Wenn jedoch alles wunschgemäß funktioniert sollte man in der /etc/ssh/sshd_config des Zielsystems folgenden Eintrag freischalten:

 # vim /etc/ssh/sshd_config
PasswordAuthentication no

Anschließend den daemon wieder mittels:

# service sshd restart

neu starten.

Somit sind dann nur noch Userlogins zugelassen, die einen Publikkey auf dem Zielsystem besitzen.

Wichtig ist jedoch immer:

Der User muß selbst darauf achten, dass sein privater Schlüssel nicht in fremde Hände gelangt! Will man noch sicherer gehen, vergibt man, wie Eingangs bereits erwähnt, bei der Erzeugung des Schlüssels eine Passphrase. Diese muss er User dann aber bei jedem neuen Verbindungsaufbau angeben!

Damit der ssh-Daemon sshd automatisch bei jedem Systemstart startet, kann die Einrichtung eines Start-Scripts über folgenden Befehl erreicht werden:

# chkconfig sshd on

Ein Überprüfung ob der Dienst (Daemon) sshd wirklich bei jedem Systemstart automatisch mit gestartet wird, kann durch folgenden Befehl erreicht werden:

# chkconfig --list | grep sshd
sshd            0:Aus   1:Aus   2:Ein   3:Ein   4:Ein   5:Ein   6:Aus

Wichtig ist jeweils der Schalter on bei den Runleveln - 2 3 4 5.

Damit man nicht bei jedem anmelden am entfernten Rechner, die Passphrase erneut eingeben müssen, nutzen wir nun den ssh-agent.

Im Homeverzeichnis des remote-clients legen wir ein Verzeichnis autostart an:

$ mkir /home/django/.config/autostart

Dort legen wir die Datei ssh-add.desktop mit folgendem Inhalt an:

[Desktop Entry]
Name=No name
Encoding=UTF-8
Version=1.0
Exec=ssh-add
X-GNOME-Autostart-enabled=true

Somit wird beim nächsten Amelden am X-Gnome-Desktop die passphrase einmalig abgefragt und beim Anmelden am Remotesystem mit übertragen.

Oft steht man vor einem Problem, dass man ein Host nicht direkt via ssh erreichbar ist, man aber dennoch zur Adminsitration dort hin möchte oder gar Dateien via scp kopieren möchte.

Schauenm wir uns hierzu einfach mal nachstehende Skizze an.

Von der Admin-Workstation aus, wollen wir nun nicht nur zum nächstgelegenen Host springen, sondern auch zum übernächsten oder gar zu einem Host im Internet, den wir aber aus Sicherheitsgründen nicht direkt erreichen dürfen und auch können.

<uml width=775 title=„Grafische System-Übersicht“>

state Firewall_A {

Firewall_A : -----------
Firewall_A : A-Firewall
Firewall_A : -----------

}

state Internet { state fremdgehostetes_System

fremdgehostetes_System : Host beim Housing-Provider
fremdgehostetes_System : Hostname <was-das-auch-immer-für-ein geiler-FQDN-sein-mag>
fremdgehostetes_System : IP-Adresse: aa-bb-cc-dd

}

state DMZ {

state bredmz {
  bredmz : EDMZ-Netzwerkswitch (bredmz)
  bredmz : Netz:10.0.0.0/24
}
  state bridmz {
  bridmz : EDMZ-Netzwerkswitch (bridmz)
  bridmz : Netz:10.10.0.0/24
}
state edmz_switch {
  edmz_switch : EDMZ-Switch 
  edmz_switch : Netgear Typ: x
}
state FWB {
  FWB : FQDN: vml000010.dmz.nausch.org
  FWB : ------------------------------------
  FWB : Services: iptables
}
state FWC {
  FWC : FQDN: vml000020.dmz.nausch.org
  FWC : ------------------------------------
  FWC : Services: iptables
}

state DMZ_HOSTs {

state IDMZ_Repository_Host {
   IDMZ_Repository_Host : FQDN: vml000050.dmz.nausch.org
   IDMZ_Repository_Host : CNAME : syslog, tftp, install
   IDMZ_Repository_Host : IP (IDMZ) : eth0 - 52:54:00:19:08:67 - 10.0.0.50
   IDMZ_Repository_Host : Services : syslog, httpd, rpm-repository, tftp/pxe 
}
state EDMZ_Repository_Host {
   EDMZ_Repository_Host : FQDN: vml100080.dmz.nausch.org
   EDMZ_Repository_Host : CNAME : mail
   EDMZ_Repository_Host : IP (EDMZ) : eth0 - 52:54:00:14:12:71 - 10.0.0.50
   EDMZ_Repository_Host : Services : syslog, httpd, rpm-repository, tftp/pxe 
}

} }

state Intranet {

state Switch {
  Switch : Physikalischer Netzwerk-Switch
  Switch : Netz 10.10.10.0/26
}
state Workstation {
  Workstation : Gerät: Djangos Admin-Workstation
  Workstation : Hostname: pml010040
  Workstation : CNAME: office-work
  Workstation : MAC: 
  Workstation : IP:10.10.10.40
}

}

FWB -down-> edmz_switch  
bredmz -down-> FWB  
FWC -up-> bredmz
FWC -up-> bridmz
bredmz -up-> EDMZ_Repository_Host
bridmz -up-> IDMZ_Repository_Host
     
Switch -up-> FWC

Workstation -up-> Switch
edmz_switch --> Firewall_A
Firewall_A -right-> fremdgehostetes_System

</uml>

manuelle Sprünge

Die vermutlich naheliegendste Variante ist vermutlich der jeweils manuelle Spring zum nächsten Host. Damit wir in unserem Beispiel die A-Firewall erreichen können springen wir nacheinander zum jeweilig nächsten Host. Mit Hilfe der Option -A nutzen wir dabei die SSH-Key-Forwarding-Option des SSH-Agenten.

 $ ssh -A firewall-c.idmz.nausch.org
 $ ssh -A firewall-b.edmz.nausch.org
 $ ssh -A firewall-a.nausch.org

Na ja, komfortabel ist das nicht gerade und beim Kopieren von Daten von Ende zu Ende nervt das doch gewaltig, oder?

verkette Sprünge

O.K. wird sich da der ein oder andere sagen, dann verkette ich die Sprünge doch einfach.

 $ ssh -A -t firewall-c.idmz.nausch.org ssh -A -t firewall-b.edmz.nausch.org ssh -A firewall-a.nausch.org

Oder ich schreib mir jeweils kleine bash-scripte zum Springen

 $ vim ~/bin/fwa-jump
~/bin/fwa-jump
# /bin/bash
ssh -t -A -Y firewall-c.idmz.nausch.org 'ssh -Y -A -l swat maill.idmz.nausch.org'

Na ja, das Kopieren geht immer noch nur von Host zu Host, oder eben mit einer verketteten Befehlsfolge oder eigenen Bash-Scripten.

ssh mit ProxyCommand und netcat

Die Komfortabelste Variante ist nun die Nutzung der Option ProxyCommand. Hierzu legen wir uns einmalig eine entsprechende Konfigurationsdatei auf unserer Administrations-Workstation mit nachfolgendem Inhalt an.

 $ vim ~/.ssh/config
~/.ssh/config
# Django : 2012-06-13
# ssh-jumps über mehrere Sprunghosts
 
# Erster Sprunghost (fwc) - direkt erreichbar
# Host -->  fwc
Host fwc
    Hostname firewall-c.idmz.nausch.org
 
# Zweiter Sprunghost (fwb) - nur über fwc erreichbar
# Host -->  fwc --> fwb
Host fwb
    Hostname firewall-b.edmz.nausch.org
    ProxyCommand  ssh fwc nc -w 120 %h %p
 
# Dritter Sprunghost (fwa) - nur über fwb erreichbar
# Host --> fwc --> fwb --> fwa 
Host fwa
    Hostname firewall-a.nausch.org
    ProxyCommand  ssh fwb nc -w 120 %h %p
 
# externer Server im Internet nur über externe Firewall "A" erreichbar
# also: Host --> fwc --> fwb --> fwa --> daxie
Host daxie
    Hostname <was-das-auch-immer-für-ein geiler-FQDN-sein-mag>
    ProxyCommand  ssh -l root -i ~/.ssh/id_rsa_daxie -2 -4 fwa nc -w 120 %h %p

Anschließend passen wir noch die Dateiberechtigungen an, damit ssh später nicht mäkelt.

 $ chmod 600 ~/.ssh/config

Auf den Sprunghosts wird das Paket netcat benötigt. Wenn dies noch nicht bei der Grundinstallation unseres Systems bereits installiert wurde, werden wir dies nun noch nachholen.

 # yum install nc -y

Nun können wir ganz einfach direkt einen Tunnel zu unserem Zielhost aufspannen, genauso also würden wir den Zielhostz direkt „sehen“.

 $ ssh fwa

Auch können wir nun ohne großem Heckmeck Dateien von einem Ende zum anderen Ende kopieren.

 $ scp ~/Downloads/enigmail-1.4-sm+tb.xpi daxie:/tmp/
 $ scp daxie:/home/baby/Photos/Bild_001.png .

Links

Diese Website verwendet Cookies. Durch die Nutzung der Website stimmen Sie dem Speichern von Cookies auf Ihrem Computer zu. Außerdem bestätigen Sie, dass Sie unsere Datenschutzbestimmungen gelesen und verstanden haben. Wenn Sie nicht einverstanden sind, verlassen Sie die Website.Weitere Information
  • centos/ssh-install.1479054792.txt.gz
  • Zuletzt geändert: 13.11.2016 16:33.
  • von django